题意:求给定字符串的三元组(I,J,K)  使得S[i..j] 和 S[j+1..k] 都是回文串。求所有满足条件的三元组 ∑(i*k)

题解:求出以j为结尾的回文串起始位置的和记为lv[j],和以j+1为开始的回文串末位置的和rv[j+1]

答案就是∑[j:1-n](lv[j] * rv[j+1])

因为……

(a+b+c....)*(x+y+z.....) = a*x + a*y + a*z + ....

看了题解之后才恍然大悟ˊ_>ˋ有多蠢

然后就是自己写的代码

一直wa,以为哪里没有取模,瞪了一个小时,发现,哦,有一个除法,÷2,应该算逆元

天啦噜。。。

看到很多人分了奇偶,我也没想那么多,感觉是一样的,可能效率差一些吧……

我的想法是对于每一个i,它所能到达的地方就是,i+mp[i](manacher中数组),那么对于所有它能到达的位置,设为j,j所对应的起始位置就是i*2-j,于是每次只要把所能到达的点加i,记为rv[],也就是rv[j]+i, 每个点所有前面点的贡献值就是rv[j]*2-j*ti(所能到达j点的次数)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
using namespace std;
const int N = ;
const ll MOD = 1000000007LL;
const ll inv = ;
char str[N];
char ma[N];
int mp[N]; ll ti[N], lv[N], rv[N]; int Manacher()
{
int len = strlen(str);
int l = ;
ma[l++] = '$';
ma[l++] = '#';
for (int i = ; i < len ; i++) {
ma[l++] = str[i];
ma[l++] = '#';
}
ma[l] = ;
int mx = ,id = ;
for (int i = ; i < l ; i++) {
mp[i] = mx > i ? min(mp[ * id - i], mx - i) : ;
while (ma[i + mp[i]] == ma[i - mp[i]]) mp[i]++;
if (i + mp[i] > mx) {
mx = i + mp[i];
id = i;
}
}
return l;
} inline void up(ll &x, ll y)
{
x += y;
if (x >= MOD) x -= MOD;
if (x < ) x += MOD;
} ll solve()
{
int l = Manacher();
memset(lv, , sizeof lv);
memset(ti, , sizeof ti);
for (int i = ; i < l; ++i) {
up(lv[i], i);
up(lv[i+mp[i]], -i);
ti[i]++;
ti[i+mp[i]]--;
}
for (int i = ; i < l; ++i) {
up(lv[i], lv[i-]);
up(ti[i], ti[i-]);
} for (int i = ; i < l; ++i) {
lv[i] = ((lv[i] * % MOD - ti[i] * i % MOD) % MOD + MOD) % MOD;
}
memset(rv, , sizeof rv);
memset(ti, , sizeof ti);
for (int i = l-; i > ; --i) {
up(rv[i], i);
up(rv[i-mp[i]], -i);
ti[i]++;
ti[i-mp[i]]--;
}
for (int i = l-; i > ; --i) {
up(rv[i], rv[i+]);
up(ti[i], ti[i+]);
}
for (int i = l-; i > ; --i) {
rv[i] = ((rv[i] * % MOD - ti[i] * i % MOD) + MOD) % MOD;
}
ll ans = ;
for (int i = ; i < l; i += ) {
ans = (ans + (lv[i] * inv % MOD) * (rv[i+] * inv % MOD) % MOD) % MOD;
}
return ans;
} int main()
{
//freopen("in", "r", stdin);
while (~scanf("%s",str)) {
cout << solve() << endl;
}
return ;
}

hdu5785--Interesting(manacher)的更多相关文章

  1. 多校1005 HDU5785 Interesting (manacher)

    // 多校1005 HDU5785 Interesting // 题意:给你一个串,求相邻两个回文串左边端点*右边端点的和 // 思路:马拉车算出最长回文半径,求一个前缀和,既得到每个点对答案的贡献. ...

  2. HDU5785 Interesting(Manacher + 延迟标记)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5785 Description Alice get a string S. She think ...

  3. 【HDU5785】Interesting [Manacher]

    Interesting Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description Input Outp ...

  4. HDU-5785 Interesting(Manacher算法+区间处理)

    题目大意:给一个字符串,求所有相邻两回文子串的外侧下标之积的和 题目分析:另L[i]为所有以 i 为右端点的回文字串的左端点之和,同理,另R[i]表示所有以 i 为左端点的回文子串的右端点之和.显然, ...

  5. Interesting (manacher + 前缀和处理)

    题意:相邻的两端回文串的价值为两个回文串总的区间左端点 × 区间右端点.然后计算目标串中所有该情况的总和. 思路:首先用manacher求出所有中心点的最大半径,然后我们知道对于左区间我们把贡献记录在 ...

  6. HDU 5785 Interesting manacher + 延迟标记

    题意:给你一个串,若里面有两个相邻的没有交集的回文串的话,设为S[i...j] 和 S[j+1...k],对答案的贡献是i*k,就是左端点的值乘上右端点的值. 首先,如果s[x1....j].s[x2 ...

  7. HDU5785 manacher+差分数组

    用manacher算法O(n)求出所有的回文半径.有了回文半径后,就可以求出L[i]表示以i结尾的回文串的起始位置的和R[i]表示以i起始的回文串的结尾位置的和,然后就可以求出答案了,这里要注意奇偶长 ...

  8. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  9. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  10. BZOJ2342 Manacher + set

    题一:别人介绍的一道题,题意是给出一个序列,我们要求出一段最常的连续子序列,满足:该子序列能够被平分为三段,第一段和第二段形成回文串,第二段和第三段形成回文串. 题二:BZOJ2342和这题非常的相似 ...

随机推荐

  1. hdu 1760 A New Tetris Game 博弈论

    找sg值,可以选择暴力,也可以利用sg值的特点简化. 暴力就跟取石子一样,没什么差别,DFS搞定.把矩阵看成一个字符串,字符串就是一个状态. 其实我们也可以不暴力求sg值,因为只要当前状态能到达一个s ...

  2. DAO是什么技术

    DAO是Data Access Object数据访问接口,数据访问:故名思义就是与数据库打交道.夹在业务逻辑与数据库资源中间. 在核心J2EE模式中是这样介绍DAO模式的:为了建立一个健壮的J2EE应 ...

  3. WPF之小动画三

    如果前两篇的博客太为普通,那么接下来的内容将让你动画实在是太厉害了.本文将会介绍两个关于纯手工实现动画的形式,当然动画效果就不用我多说了. 基于帧的动画: 此处的帧并不是之前介绍的Animation这 ...

  4. python 包管理工具pip安装与使用

    pip是python的一个包管理工具,与之类似的工具还有easy_install.根据官网的说法 如果你的python版本在Python 2 >=2.7.9 or Python 3 >=3 ...

  5. 在VS中让一个JS文件智能提示另一个JS文件中的成员

    “在VS中如何让一个JS文件智能提示另一个JS文件中的成员” 有时候会有这种情况:当我的一个Web页面引用了两个JS文件(假如分别叫common.js和JScript1.js),如果JScript1. ...

  6. WINCE6.0 error C2220: warning treated as error问题解决

    今天在编译IMX515的BSP的时候,发现下面的编译错误问题: BUILD: [00:0000002476:PROGC ] BuildingCOMPILE Pass in F:\WINCE600\PL ...

  7. C#中保留2位小数

    public static void Method() { double a = 1.991; a = Math.Round(a); Console.WriteLine("a = {0}&q ...

  8. Android学习Service中遇到的问题

    今天学习service,然后遇到了一个force close,log中存在这个一句话: 05-23 14:13:26.408: E/AndroidRuntime(17616): android.con ...

  9. JS 打印报表

    <script type="text/javascript"> window.print(); </script> 前台页面: <%@ Page La ...

  10. [转] struts.xml配置详解

    转自:http://www.cnblogs.com/fmricky/archive/2010/05/20/1740479.html struts.xml是我们在开发中利用率最高的文件,也是Struts ...