最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津

法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差
越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部
分差别变小。因此,使类间方差最大的分割意味着错分概率最小。
对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比
例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均
灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,
图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
      ω0=N0/ M×N (1)
      ω1=N1/ M×N (2)
      N0+N1=M×N (3)
      ω0+ω1=1 (4)
      μ=ω0*μ0+ω1*μ1 (5)
      g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)
将式(5)代入式(6),得到等价公式: g=ω0ω1(μ0-μ1)^2 (7)
采用遍历的方法得到使类间方差最大的阈值T,即为所求。

Otsu算法步骤如下:
设图象包含L个灰度级(0,1…,L-1),灰度值为i的的象素点数为Ni ,图象总的象素点数为N=N0+N1+...+N(L-1)。灰度值为i的点的概为:
P(i) = N(i)/N.
门限t将整幅图象分为暗区c1和亮区c2两类,则类间方差σ是t的函数:
σ=a1*a2(u1-u2)^2 (2)
式中,aj 为类cj的面积与图象总面积之比,a1 = sum(P(i)) i->t, a2 = 1-a1; uj为类cj的均值,u1 = sum(i*P(i))/a1 0->t, 
u2 = sum(i*P(i))/a2, t+1->L-1 
该法选择最佳门限t^ 使类间方差最大,即:令Δu=u1-u2,σb = max{a1(t)*a2(t)Δu^2}

/****************************************以下部分内容为原创;OTSU代码**********************************************/

首先是自己实现的OTSU,原来不知道MATLAB直接有就自己编了……崩溃啊!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%OTSU 最大类间方差法图像分类
%该方法将图像分为前景和背景两部分,背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,
%当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。
%Command 中调用方式: OTSU('D:\Images\pic_loc\1870405130305041503.jpg')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function th=thresh_md(a);
x=imread(a);
a=rgb2gray(x);
subplot(211);
imshow(a,[]);
%[count x]=imhist(a);
[m,n]=size(a);
N=m*n;
L=256; for i=1:L
count(i)=length(find(a==(i-1)));
f(i)=count(i)/(N);
end for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count(i)~=0
nd=i-1;
break;
end
end
%f=count(st+1:nd+1); %f是每个灰度出现的概率
p=st; q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); %u是像素的平均值
ua(i)=u; %ua(i)是前i个像素的平均灰度值
end; for i=1:q
w(i)=sum(f(1:i)); %w(i)是前i个像素的累加概率
end; w=w+0.0001; d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); %可以取出数组的最大值及取最大值的点
th=tp+p; for i=1:m
for j=1:n
if a(i,j)>th
a(i,j)=0;
else
a(i,j)=255;
end
end
end
subplot(212);
imshow(a,[]);

下面直接调用MATLAB的函数:

I=imread('D:\Images\pic_loc\1870405130305041503.jpg');
a=rgb2gray(I);
level = graythresh(a);
a=im2bw(a,level);
imshow(a,[]);

实验结果:

 
http://blog.csdn.net/abcjennifer/article/details/6671288

图像二值化----otsu(最大类间方差法、大津算法)的更多相关文章

  1. 自适应阈值二值化之最大类间方差法(大津法,OTSU)

    最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...

  2. Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化  [函数名称] Ostu法图像二值化      WriteableBitmap OstuThSegment(Writ ...

  3. openCV_java 图像二值化

    较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...

  4. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  5. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  6. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

  7. C# 指针操作图像 二值化处理

    /// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...

  8. MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)

    图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口 ...

  9. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

随机推荐

  1. 1106. Lowest Price in Supply Chain (25)

    A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone invo ...

  2. Tmall Programmer Triples Smartisan Sales

    页面程序造假,丢脸丢到华尔街日报去咯 http://blogs.wsj.com/chinarealtime/2014/10/13/tmall-programmer-triples-smartisan- ...

  3. ActiveMQ.xml文件的主要配置

    ActiveMQ.xml文件默认位置位于 activemq/conf/目录下,主要的配置及解析如下:<beans xmlns="http://www.springframework.o ...

  4. hg211g破解获取管理员密码,可以连接路由器。默认光猫来拨号。

    先通过这种方式获取telecomadmin密码:1.使用useradmin用户登录设备2.在IE地址栏输入该路径”192.168.1.1/backupsettings.html”3.点击保存设备备份配 ...

  5. .NET基础之--C#中判断空字符串的3种方法性能分析

    那么为什么if(a.Length==0)最快呢?因为整数判断等于最快,没有经过实例化等复杂的过程. 所以:建议大家判断字符串是否为空用 if(a.Length==0). 对于三种方法的评价: 1.if ...

  6. php集成开发环境IDE

    ZendStudio EclipsePHP PhpStorm NetBeans

  7. Codeforces Round #333 DIV2

    D: B. Lipshitz Sequence time limit per test 1 second memory limit per test 256 megabytes input stand ...

  8. MVC下用C#实现Excel导出

    Aspx页面脚本: function exportxls() { window.open("/Common/HomeExport?startdate=" + $("#hi ...

  9. STS中取消show in Breadcrumb方法

    前言:STS是Spring产品下的一个开发工具,它和eclipse很像,只不过对Spring有更好的兼容.Show in Breadcrumb是快速导航条,可以清晰的看到我们当前的类,属性或方法的导航 ...

  10. Spring中HibernateCallback的用法(转)

    Hibernate的复杂用法HibernateCallback HibernateTemplate还提供一种更加灵活的方式来操作数据库,通过这种方式可以完全使用Hibernate的操作方式.Hiber ...