题目:

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

链接: http://leetcode.com/problems/longest-valid-parentheses/

题解:

一开始想要尝试跟Valid Parentheses类似的解法,就是维护一个leftCount,一个rightCount,当leftCount < rightCount的时候清零,当leftCount = rightCount时,尝试更新max,结果出错。后来看到曹神的解法,才发现还应该从字符串尾部向前再来一遍。

下面是解法,two passes,  Time Complexity - O(n), Space Complexity - O(1)。

public class Solution {
public int longestValidParentheses(String s) { //if left parentheses count > right parentheses count, case always valid
if(s == null || s.length() == 0)
return 0;
int start = -1, depth = 0, max = 0; for(int i = 0; i < s.length(); i++) {
if(s.charAt(i) == '(')
depth++;
else {
depth--;
if(depth < 0) {
start = i;
depth = 0;
} if(depth == 0)
max = Math.max(max, i - start);
}
} depth = 0;
start = s.length(); for(int i = s.length() - 1; i >= 0; i--) { //if right parentheses count > left parentheses count, case always valid
if(s.charAt(i) == ')')
depth++;
else {
depth--;
if(depth < 0) {
start = i;
depth = 0;
} if(depth == 0)
max = Math.max(max, start - i);
}
} return max;
}
}

还有一种解法是one pass, 方法是维护一个stack以及一个start index,遇到左括号入栈,遇到右括号出栈,当stack为空时说明左右括号平衡,计算i 与 start的距离, 否则左括号数目>右括号数目,计算i 与当前栈顶元素距离。 有小trick可以设置start = -1,这样代码里计算距离就可以不用 + 1了。还可以稍微简化一下,不过逻辑下面更清楚。

Time Complexity - O(n), Space Complexity - O(n)。

public class Solution {
public int longestValidParentheses(String s) {
if(s == null || s.length() == 0)
return 0;
Stack<Integer> stack = new Stack<>();
int start = 0, max = 0; for(int i = 0; i < s.length(); i++) {
if(s.charAt(i) == '(') //record index of each '('
stack.push(i);
else {
if(stack.isEmpty()) //try to find first '('
start = i + 1;
else {
stack.pop();
if(stack.isEmpty()) //left num = right num
max = Math.max(max, i - start + 1);
else //left > right, cal max with current top element in stack
max = Math.max(max, i - stack.peek());
}
}
} return max;
}
}

二刷:

可以用三种方法来做:

  1. 一种是曹神的方法,使用类似valid parentheses的方法。
    1. 维护一个depth,一个count。
    2. 从左向右遍历时并且当char == '('时,depth++,否则char = ')',depth--,这时候我们count++,因为找到了一对valid parenthese
    3. 当depth == 0的时候,左右括号平衡,可以尝试更新max, max = Math.max(max, count * 2)
    4. 接下来判断depth是否小于0,小于0的话depth = 0, count = 0,我们从头开始计算。
    5. 左右各自遍历一遍。从右向左遍历是为了计算类似于"()(()()"这种情况,这时depth always > 0,没办法得到max = 4的结论。
  2. 一种是一维DP,分好几种情况,画一个decision tree会比较清楚逻辑。
    1. 维护一个数组max[], 其中max[i]代表以s.charAt(i)结尾的longest valid parentheses的长度。我们考虑接下来集中情况。
    2. max[0] = 0,因为此时不能组成"()"。所以我们可以直接从 i = 1开始遍历
    3. 当前字符是'(', max[i] = 0,因为valid parentheses不能以'('结尾
    4. 否则,当前字符等于')',这时候继续判断几种情况

      1. s.charAt(i - 1) = '(',正好可以组成一对括号。
        1. 当 i - 2 >= 0,max[i] = max[i - 2] + 2
        2. 当 i - 2 < 0, max[i] = 2
      2. 否则s.charAt(i - 1) = ')',此时我们也是继续进行判断
        1. 此时我们要求出i关于max[i - 1]对称的字符,就是 i - max[i - 1] - 1
          1. 假如i - max[i - 1] - 1 >= 0,并且 s.charAt(i - max[i - 1] - 1) == '('
            1. 此时表示从i - max[i - 1] - 1到i这一段都合理,所以这一部分等于max[i - 1] + 2, 我们要继续判断  i - max[i - 1] - 2
              1. 当i - max[i - 1] - 2 >= 0, 则 max[i] = max[i - 1] + 2 + max[i - max[i - 1] - 2]
              2. 否则max[i] = max[i - 1] + 2
          2. 否则max[i] = 0,我们不改变什么
    5. 在开头维护一个res = 0, 每次计算完max[i]之后尝试更新这个res,最后返回的也是这个res.
    6. 其实还可以继续简化,留给三刷了
  3. 一种是利用一个stack来计算,这个留给三刷了,也是O(n)和O(n)

Java:

Time Complexity - O(n), Space Complexity - O(1)

public class Solution {
public int longestValidParentheses(String s) {
if (s == null || s.length() == 0) {
return 0;
}
int count = 0, max = 0, depth = 0;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
if (c == '(') {
depth++;
} else {
depth--;
count++;
if (depth == 0) {
max = Math.max(max, count * 2);
}
if (depth < 0) {
depth = 0;
count = 0;
}
}
}
depth = 0;
count = 0;
for (int i = s.length() - 1; i >= 0; i--) {
char c = s.charAt(i);
if (c == ')') {
depth++;
} else {
depth--;
count++;
if (depth == 0) {
max = Math.max(max, count * 2);
}
if (depth < 0) {
depth = 0;
count = 0;
}
}
}
return max;
}
}

DP - Time Complexity - O(n), Space Complexity - O(n)

public class Solution {
public int longestValidParentheses(String s) {
if (s == null || s.length() == 0) {
return 0;
}
int[] max = new int[s.length()]; // max[i] contains longest valid parentheses end at i
int res = 0;
for (int i = 1; i < max.length; i++) {
char c = s.charAt(i);
if (c == '(') {
max[i] = 0;
} else { // c = ')'
if (s.charAt(i - 1) == '(') {
max[i] = i - 2 >= 0 ? max[i - 2] + 2 : 2;
} else {
if (i - max[i - 1] - 1 >= 0 && s.charAt(i - max[i - 1] - 1) == '(') {
max[i] = max[i - 1] + 2 + (i - max[i - 1] - 2 >= 0 ? max[i - max[i - 1] - 2] : 0);
}
}
}
res = Math.max(max[i], res);
}
return res;
}
}

题外话:

1-20-2016

DP一直学得不好, divide and conquer也学得不好,需要多练习多思考。 像Matrix multiply, counting inversion,closest pair,merge sort之类的,一定要多多练习。还有Weighted quick union with path compression, run-length coding, Huffman Tree等等。

三刷:

还是使用曹神的方法,赞曹神思路清晰。

Java:

public class Solution {
public int longestValidParentheses(String s) {
if (s == null || s.length() == 0) return 0;
int max = 0, count = 0, start = 0, len = s.length();
for (int i = 0; i < len; i++) {
if (s.charAt(i) == '(') count++;
else count--;
if (count == 0) max = Math.max(max, i - start + 1);
if (count < 0) {
count = 0;
start = i + 1;
}
}
start = len - 1;
count = 0;
for (int i = len - 1; i >= 0; i--) {
if (s.charAt(i) == ')') count++;
else count--;
if (count == 0) max = Math.max(max, start - i + 1);
if (count < 0) {
count = 0;
start = i - 1;
}
}
return max;
}
}

Reference:

http://weibo.com/cpcs     曹神微博

http://www.cnblogs.com/springfor/p/3869495.html   小莹子

https://leetcode.com/discuss/9156/my-solution-using-one-stack-in-one-pass

https://leetcode.com/discuss/21549/simple-java-solution-o-n-time-one-stack

https://leetcode.com/discuss/8092/my-dp-o-n-solution-without-using-stack

https://leetcode.com/discuss/7609/my-o-n-solution-using-a-stack

32. Longest Valid Parentheses的更多相关文章

  1. [Leetcode][Python]32: Longest Valid Parentheses

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 32: Longest Valid Parentheseshttps://oj ...

  2. leetcode 20. Valid Parentheses 、32. Longest Valid Parentheses 、

    20. Valid Parentheses 错误解法: "[])"就会报错,没考虑到出现')'.']'.'}'时,stack为空的情况,这种情况也无法匹配 class Soluti ...

  3. 刷题32. Longest Valid Parentheses

    一.题目说明 题目是32. Longest Valid Parentheses,求最大匹配的括号长度.题目的难度是Hard 二.我的做题方法 简单理解了一下,用栈就可以实现.实际上是我考虑简单了,经过 ...

  4. [LeetCode] 32. Longest Valid Parentheses 最长有效括号

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  5. leetcode 32. Longest Valid Parentheses

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  6. Java [leetcode 32]Longest Valid Parentheses

    题目描述: Given a string containing just the characters '(' and ')', find the length of the longest vali ...

  7. leetcode problem 32 -- Longest Valid Parentheses

    Longest Valid Parentheses Given a string containing just the characters '(' and ')', find the length ...

  8. 【Python】32. Longest Valid Parentheses

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  9. 【一天一道LeetCode】#32. Longest Valid Parentheses

    一天一道LeetCode系列 (一)题目 Given a string containing just the characters '(' and ')', find the length of t ...

随机推荐

  1. WPF 系统托盘 图标闪烁

    WPF消息通知 系统托盘,图标闪烁 using System.Windows.Forms; using System.Windows.Threading; public partial class W ...

  2. SQLserver通过链接服务器连接oracle

    在SQLserver中一直使用的是DTS抽取数据,但是DTS微软只支持到2008,到了2012后就没有这个工具了,现在需要在SQLserver跟Oracle中间建立一个通道,借助这个通道,将Oracl ...

  3. 【js】js 让图片旋转

     转http://www.cnblogs.com/ustcyc/p/3760116.html 核心: canvas.style.filter = "progid:DXImageTransfo ...

  4. JPA学习---第三节:搭建JPA开发环境和全局事务介绍

    一.创建 Java 项目 1.导入所需的 jar 包: 2.创建 persistence.xml 文件, 代码如下: <?xml version="1.0" encoding ...

  5. LintCode-Word Search II

    Given a matrix of lower alphabets and a dictionary. Find all words in the dictionary that can be fou ...

  6. tar命令,转来等用

    tar 解压缩命令 tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令 ...

  7. Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) D. Little Artem and Dance

    题目链接: http://codeforces.com/contest/669/problem/D 题意: 给你一个初始序列:1,2,3,...,n. 现在有两种操作: 1.循环左移,循环右移. 2. ...

  8. ORA-01031:insufficient privileges

    描述:oracle11g用scott用户在plsql上以sysdba身份登录显示以上错误,可是在cmd面板中却正常,网上各种找答案不没有对症,最后这位网友的回答解决了我的问题. 原帖网址:http:/ ...

  9. 【BZOJ】【3404】【USACO2009 Open】Cow Digit Game又见数字游戏

    博弈论 Orz ZYF 从前往后递推……反正最大才10^6,完全可以暴力预处理每个数的状态是必胜还是必败(反正才两个后继状态),然后O(1)查询……我是SB /******************** ...

  10. 关于vs2010 起始页

    vs2010 起始页不显示怎么解决 工具 ---> 选项---->环境---->启动---->启动时(选项框),然后点击框尾的下拉三角按钮,点选"显示起始页" ...