并发处理的技术背景

并行化处理目前很受重视, 因为在很多时候,并行计算能大大的提高系统吞吐量,尤其在现在多核多处理器的时代, 所以像lisp这种古老的语言又被人们重新拿了起来, 函数式编程也越来越流行。 介绍一个python的并行处理的一个库: greenlet。 python 有一个非常有名的库叫做 stackless ,用来做并发处理, 主要是弄了个叫做tasklet的微线程的东西, 而greenlet 跟stackless的最大区别是, 他很轻量级?不够, 最大的区别是greenlet需要你自己来处理线程切换, 就是说,你需要自己指定现在执行哪个greenlet再执行哪个greenlet。

greenlet的实现机制

以前使用python开发web程序,一直使用的是fastcgi模式.然后每个进程中启动多个线程来进行请求处理.这里有一个问题就是需要保证每个请求响应时间都要特别短,不然只要多请求几次慢的就会让服务器拒绝服务,因为没有线程能够响应请求了.平时我们的服务上线都会进行性能测试的,所以正常情况没有太大问题.但是不可能所有场景都测试到.一旦出现就会让用户等好久没有响应.部分不可用导致全部不可用.后来转换到了coroutine,python 下的greenlet.所以对它的实现机制做了一个简单的了解.
每个greenlet都只是heap中的一个python object(PyGreenlet).所以对于一个进程你创建百万甚至千万个greenlet都没有问题.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
typedef struct _greenlet {
    PyObject_HEAD
    char* stack_start;
    char* stack_stop;
    char* stack_copy;
    intptr_t stack_saved;
    struct _greenlet* stack_prev;
    struct _greenlet* parent;
    PyObject* run_info;
    struct _frame* top_frame;
    int recursion_depth;
    PyObject* weakreflist;
    PyObject* exc_type;
    PyObject* exc_value;
    PyObject* exc_traceback;
    PyObject* dict;
} PyGreenlet;

每一个greenlet其实就是一个函数,以及保存这个函数执行时的上下文.对于函数来说上下文也就是其stack..同一个进程的所有的greenlets共用一个共同的操作系统分配的用户栈.所以同一时刻只能有栈数据不冲突的greenlet使用这个全局的栈.greenlet是通过stack_stop,stack_start来保存其stack的栈底和栈顶的,如果出现将要执行的greenlet的stack_stop和目前栈中的greenlet重叠的情况,就要把这些重叠的greenlet的栈中数据临时保存到heap中.保存的位置通过stack_copy和stack_saved来记录,以便恢复的时候从heap中拷贝回栈中stack_stop和stack_start的位置.不然就会出现其栈数据会被破坏的情况.所以应用程序创建的这些greenlet就是通过不断的拷贝数据到heap中或者从heap中拷贝到栈中来实现并发的.对于io型的应用程序使用coroutine真的非常舒服.

下面是greenlet的一个简单的栈空间模型(from greenlet.c)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
A PyGreenlet is a range of C stack addresses that must be
saved and restored in such a way that the full range of the
stack contains valid data when we switch to it.
 
Stack layout for a greenlet:
 
               |     ^^^       |
               |  older data   |
               |               |
  stack_stop . |_______________|
        .      |               |
        .      | greenlet data |
        .      |   in stack    |
        .    * |_______________| . .  _____________  stack_copy + stack_saved
        .      |               |     |             |
        .      |     data      |     |greenlet data|
        .      |   unrelated   |     |    saved    |
        .      |      to       |     |   in heap   |
 stack_start . |     this      | . . |_____________| stack_copy
               |   greenlet    |
               |               |
               |  newer data   |
               |     vvv       |

下面是一段简单的greenlet代码:

from greenlet import greenlet

def test1():
print 12
gr2.switch()
print 34 def test2():
print 56
gr1.switch()
print 78 gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

目前所讨论的协程,一般是编程语言提供支持的。目前我所知提供协程支持的语言包括python,lua,go,erlang, scala和rust。协程不同于线程的地方在于协程不是操作系统进行切换,而是由程序员编码进行切换的,也就是说切换是由程序员控制的,这样就没有了线程所谓的安全问题。
所有的协程都共享整个进程的上下文,这样协程间的交换也非常方便。
相对于第二种方案(I/O多路复用),使得使用协程写的程序将更加的直观,而不是将一个完整的流程拆分成多个管理的事件处理。
协程的缺点可能是无法利用多核优势,不过,这个可以通过协程+进程的方式来解决。
协程可以用来处理并发来提高性能,也可以用来实现状态机来简化编程。我用的更多的是第二个。去年年底接触python,了解到了python的协程概念,后来通过pycon china2011接触到处理yield,greenlet也是一个协程方案,而且在我看来是更可用的一个方案,特别是用来处理状态机。
目前这一块已经基本完成,后面抽时间总结一下。

总结一下
1)多进程能够利用多核优势,但是进程间通信比较麻烦,另外,进程数目的增加会使性能下降,进程切换的成本较高。程序流程复杂度相对I/O多路复用要低。
2)I/O多路复用是在一个进程内部处理多个逻辑流程,不用进行进程切换,性能较高,另外流程间共享信息简单。但是无法利用多核优势,另外,程序流程被事件处理切割成一个个小块,程序比较复杂,难于理解。
3)线程运行在一个进程内部,由操作系统调度,切换成本较低,另外,他们共享进程的虚拟地址空间,线程间共享信息简单。但是线程安全问题导致线程学习曲线陡峭,而且易出错。
4)协程有编程语言提供,由程序员控制进行切换,所以没有线程安全问题,可以用来处理状态机,并发请求等。但是无法利用多核优势。
上面的四种方案可以配合使用,我比较看好的是进程+协程的模式

python greenlet背景介绍与实现机制的更多相关文章

  1. python greenlet 背景介绍与实现机制

    最近开始研究Python的并行开发技术,包括多线程,多进程,协程等.逐步整理了网上的一些资料,今天整理一下greenlet相关的资料. 并发处理的技术背景 并行化处理目前很受重视, 因为在很多时候,并 ...

  2. Python——greenlet

    目录 1. 介绍 2. 父greenlet 3. 实例化 4. 在greenlets间切换 5. 垂死的greenlets 6. greenlet的方法和属性 7. greenlets和Python线 ...

  3. python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样

    python与java的内存机制不一样;java的方法会进入方法区直到对象消失 方法才会消失;python的方法是对象每次调用都会创建新的对象 内存地址都不i一样

  4. Python中的垃圾回收机制

    Python的垃圾回收机制 引子: 我们定义变量会申请内存空间来存放变量的值,而内存的容量是有限的,当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,而变量名是访问到变量值的唯一方式,所以 ...

  5. (编程语言+python+变量名+垃圾回收机制)*知识点

    编程语言 从低级到高级的发展的过程 1.机器语言 计算机是基于电工作的.(基于高.低电平 1010010101011) 如果用机器语言表现一个字符的意思需要多段代码的行.但是计算机读取的快. 所以机器 ...

  6. 以python为例讲解闭包机制

    以python为例讲解闭包机制 缘起 在学习JS的过程中,总是无可避免的接触到闭包机制,尤其是接触到react后,其函数式的编程思想更是将闭包发扬光大,作为函数式编程的重要语法结构,python自然也 ...

  7. 第10.4节 Python模块的弱封装机制

    一. 引言 Python模块可以为调用者提供模块内成员的访问和调用,但某些情况下, 因为某些成员可能有特殊访问规则等原因,并不适合将模块内所有成员都提供给调用者访问,此时模块可以类似类的封装机制类似的 ...

  8. Python强大的可变参数传递机制

    今天模拟定义map函数.写着写着就发现Python可变长度参数的机制真是灵活而强大. 假设有一个元组t,包含n个成员: t=(arg1,...,argn) 而一个函数f恰好能接受n个参数: f(arg ...

  9. 【转载】Python中的垃圾回收机制

    GC作为现代编程语言的自动内存管理机制,专注于两件事:1. 找到内存中无用的垃圾资源 2. 清除这些垃圾并把内存让出来给其他对象使用.GC彻底把程序员从资源管理的重担中解放出来,让他们有更多的时间放在 ...

随机推荐

  1. Python3环境安装Scrapy爬虫框架过程及常见错误

    收录待用,修改转载已取得腾讯云授权 Scrapy安装介绍 Scrapy的安装有多种方式,它支持Python2.7版本及以上或Python3.3版本及以上.下面说明Python3环境下的安装过程. Sc ...

  2. g++ 链接静态库命令应该放在最后

    昨天编译去年写的FloorServer,居然一堆错误: chu@chu-laptop:/media/E/work/github/FloorServer/FloorServer$ makeg++ -g ...

  3. 菜鸟调错(五)——jetty执行时无法保存文件

    背景交代: 上一篇博客写的是用jetty和Maven做开发.測试.在使用的过程中遇到一个小问题.就是在jetty启动以后,改动了jsp.xml等文件无法保存. 错误信息: 解决方式: 到Maven库( ...

  4. docker集群——搭建Mesos+Zookeeper+Marathon的Docker管理平台

    服务器架构 机器信息: 这里部属的机器为3个Master控制节点,3个slave运行节点,其中: zookeeper.Mesos-master.marathon运行在Master端:Mesos-sla ...

  5. 怎样实现广度优先遍历(BFS)

    BFS过程: 一:訪问顶点V,并标记V为已经訪问 二:顶点V入队列 三:假设队列非空.进行运行,否则算法结束 四:出队列取得对头顶点u,假设顶点未被訪问,就訪问该顶点,并标记该顶点为已经訪问 五:查找 ...

  6. 服务端渲染 SSR

    1.概述 SSR:网站内容由服务端渲染,然后返回客户端(查看网页源代码,所有内容都在源代码里面). 2.SSR优势 (1)SSR利于SEO. (2)SSR减少请求量和客户端渲染时间.

  7. EXTJS4自学手册——简单图形(circle,rect,text,path)

    一.画圆形: xtype: 'button', text: '画图一个圆', handler: function (btn) { Ext.create('Ext.window.Window', { l ...

  8. css学习之overlay

    CSS Overlay技巧 作者:大漠 日期:2013-11-10 点击:8  本文由大漠根据SARA SOUEIDAN的<CSS OVERLAY TECHNIQUES>所译,整个译文带 ...

  9. Hive row_number() 等用法

    1.row_number() over()排序功能: (1) row_number() over()分组排序功能: 在使用 row_number() over()函数时候,over()里头的分组以及排 ...

  10. Atitit。sql2016标准化的规划方案 v3 q2a

    Atitit.sql2016标准化的规划方案 v3 q2a 1. Sql标准化的历史3 1.1. Sql92标准4 1.2. Sql99标准4 1.3. SQL:2003为例,它包括以下9个部分 5 ...