关于AOE网络的基本概念可以参考《数据结构》或者search一下就能找到,这里不做赘述。

寻找AOE网络的关键路径目的是:发现该活动网络中能够缩短工程时长的活动,缩短这些活动的时长,就可以缩短整个工程的时长。因此,寻找关键路径就是寻找关键活动。

接下来开始寻找一个工程中的关键路径(关键活动)。

寻找关键路径,每本教材都会提及四个特征属性:Ve[],Vl[],e[],l[],此处可能还补充一个属性:活动ai的时间余量,也就是l[i]-e[i],当某个活动的时间余量=0时,该活动就是关键活动。所以,寻找关键路径(关键活动)也就是求解AOE网络中所有活动、事件的上述特征属性,然后发现时间余量为零的活动,这样的活动就是关键活动。

至此,我们分析出,求解四个特征属性就可以找到关键路径。


Ve[i]:事件Vi的最早可能发生时间。
按照就是以起始事件为源点,类似于逆迪杰斯特拉算法求解单源点的最长路径。
Vl[i]:事件Vi的最迟允许发生时间。
结束事件的最迟允许发生时间=最早可能发生时间,以此为基础,按照逆拓扑序列求解前驱事件的Vl[],每次减去关联两个事件的具有最短时长的活动。
e[i]:活动ai的最早可能开始时间。
若活动ai由弧<.vk,vj>表示,则活动ai的最早开始时间应该等于事件vk的最早发生时间Ve[k]。因而,有:e[i]=ve[k];(即:边(活动)的最早开始时间等于,它的发出顶点的最早发生时间)。
l[i]:活动ai的最迟允许开始时间。
若活动ai由弧<.vk,vj>表示,则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。 因而有:l[i]=Vl[j]-dur<.vk,vj>(为边(活动)的到达顶点的最晚发生时间减去边的权值)。


至此,所有计算完成,如果活动ai的e[i]=l[i],则ai是关键活动。

注意,如果某项工程中,多个关键活动构成了两条或更多关键路径,此时并不是缩短任意关键活动的时间都能缩短整个工程时间,而是要缩短所有关键路径的公共关键活动的时间。

例子或者详细概念,可以参考这篇博文:
http://blog.csdn.net/wang379275614/article/details/13990163

AOE网络的关键路径问题的更多相关文章

  1. AOE网络——求关键路径

    1.计算每个活动的最早发生时间(正序) earliest[1]=0; earlest[k]=max{earliest[j],+dut[j][k]} 2.计算每个活动的最晚发生时间(逆序) lastes ...

  2. AOE 网络

    1.定义 如果在无向环的带权有向图中 - 用有向边表示一个工程中的活动 - 用边上的权值表示活动的持续时间 - 用顶点表示事件 则这样的有向图叫做用边表示活动的网络,简称AOE网络 AOE在工程方面非 ...

  3. AOE网与关键路径简介

    前面我们说过的拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题.如果我们要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程, ...

  4. SDUT 2498 AOE网上的关键路径

    AOE网上的关键路径 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 一个无环的有向图称为无 ...

  5. AOE网上的关键路径(最长路径 + 打印路径)

    题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...

  6. 基于AOE网的关键路径的求解

    [1]关键路径 在我的经验意识深处,“关键”二字一般都是指临界点. 凡事万物都遵循一个度的问题,那么存在度就会自然有临界点. 关键路径也正是研究这个临界点的问题. 在学习关键路径前,先了解一个AOV网 ...

  7. sdut AOE网上的关键路径(spfa+前向星)

    http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2498&cid=1304 题目描述 一个无环的有向图称为无环图(Directed Acyc ...

  8. _DataStructure_C_Impl:AOE网的关键路径

    //_DataStructure_C_Impl:CriticalPath #include<stdio.h> #include<stdlib.h> #include<st ...

  9. 数据结构实验之图论十一:AOE网上的关键路径【Bellman_Ford算法】

    Problem Description 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边 ...

随机推荐

  1. Docker的安装和镜像管理并利用Docker容器实现nginx的负载均衡、动静分离

    Docker的安装 一.Docker的概念 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化 ...

  2. Python的静态方法和类成员方法都可以被类或实例访问,两者概念不容易理清,但还是有区别的

    转:http://www.cnblogs.com/2gua/ Python的静态方法和类成员方法都可以被类或实例访问,两者概念不容易理清,但还是有区别的: 1)静态方法无需传入self参数,类成员方法 ...

  3. 【软件安装】Xshell出现要继续使用此程序必须应用到最新的更新或使用新版本

    资源可以用,但是安装完成后启动会报错:“要继续使用此程序,您必须应用最新的更新或使用新版本” 解决办法先修改你电脑时间为前一年(2017 1月),然后就可以打开xshell了,打开后"工具& ...

  4. select操作大全

    每一次操作select的时候,总是要出来翻一下资料,不如自己总结一下,以后就翻这里了. 比如<select class="selector"></select&g ...

  5. CheckBox 样式

    .cb td {             width: 100px;         } .cb label {             display: inline-block;          ...

  6. MVC 下拉框获取值和赋值(多选)

    1.视图 <div class="form-group"> @Html.LabelFor(m => m.Positions, new { @class = &qu ...

  7. .net使用redis入门笔记

    1.学习blog:http://www.cnblogs.com/yangecnu/p/Introduct-Redis-in-DotNET.html 2.redis官网:http://redis.io/ ...

  8. css中的单位和css中的颜色表示方法

    css中颜色的表示方式: 图片来源http://www.w3school.com.cn

  9. js for in 遍历对象与数组

    遍历对象 let obj = { q:'9', w:'5', e:'2', t:'7', c:'3' } //for in 遍历对象 key为对象的属性名称,遍历属性值时用[]操作符访问 //通过[] ...

  10. SpannableString与SpannableStringBuilder使用

    转自:http://blog.it985.com/14433.html1.SpannableString.SpannableStringBuilder与String的关系 首先SpannableStr ...