我bitset+二分未遂后就来用ExGCD了,然而这道题的时间复杂度还真是玄学......

我们枚举m然后对每一对用ExGCD判解,我们只要满足在最小的一方死亡之前无解就可以了,对于怎么用,就是ax+by=c,在这里c是距离差,a是速度差,b是m,x是我们要的解,y随意。

时间复杂度O(m*n*n*log),然而这是标解..........

#include <cstdio>
int prob[][],len,n,c[],p[],l[],S;
inline int Min(int x,int y){
return x<y?x:y;
}
inline int Max(int x,int y){
return x>y?x:y;
}
inline int GCD(int x,int y){
return x==?y:GCD(y%x,x);
}
void ExGCD(int a,int &x,int b,int &y){
if(!b){
x=,y=;
return;
}
ExGCD(b,x,a%b,y);
int temp=x;
x=y,y=temp-a/b*y;
}
int main(){
freopen("savage.in","r",stdin);
freopen("savage.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&c[i],&p[i],&l[i]);
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
prob[++len][]=c[i]-c[j],
prob[len][]=p[j]-p[i],
prob[len][]=Min(l[i],l[j]);
if(prob[len][]<)
prob[len][]*=-,prob[len][]*=-;
}
S=Max(S,c[i]);
}
for(int m=S;m<=;m++){
bool god=;
for(int i=;i<=len;i++){
int gcd=GCD(prob[i][],m);
if(prob[i][]%gcd==){
int x,y;
ExGCD(prob[i][],x,m,y);
x=x*prob[i][]/gcd;
int t=m/gcd;
x=(x%t+t)%t;
if(x<=prob[i][]){
god=;
break;
}
}
}
if(god){
printf("%d",m);
return ;
}
}
}

【BZOJ 1407】[Noi2002]Savage ExGCD的更多相关文章

  1. 【bzoj 1407】【Noi2002】Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

  2. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

  3. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  4. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  5. LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego

    [bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...

  6. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  7. 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description ...

  8. 【BZOJ 2132】圈地计划 && 【7.22Test】计划

    两种版本的题面 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土 ...

  9. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

随机推荐

  1. Yii 2.0.6 - 从入口到Action执行

    defined('YII_DEBUG') or define('YII_DEBUG', true); defined('YII_ENV') or define('YII_ENV', 'dev'); r ...

  2. 第四课:PHP 变量

    变量指程序中使用的数值是可以变化的量,与常量(一旦被定义,就无法改变)相反. 变量是用于存储信息的"容器": 实例 <?php $x=5; $y=6; $z=$x+$y; e ...

  3. ELK的简述安装

    一.ElasticSearch集群的安装及其配置 https://www.cnblogs.com/gentle-awen/p/10000801.html 可视化x-pack安装: https://ww ...

  4. FastDFS轻量级分布式文件系统部署

    FastDFS介绍 FastDFS 是一个由 C 语言实现的开源轻量级分布式文件系统,作者余庆,支持 Linux.FreeBSD.AID 等 Unix 系统,解决了大数据存储和读写负载均衡等问题,适合 ...

  5. 析构函数的调用与return语句

    老师在课堂上讲到了return语句在执行时会自动调用对象的析构函数.我编写了下述代码测试发现整个程序析构函数调用次数与构造函数不等,这样难道不会产生内存泄漏吗? 源代码如下: #include < ...

  6. P1103 书本整理

    P1103 书本整理 题目描述 Frank是一个非常喜爱整洁的人.他有一大堆书和一个书架,想要把书放在书架上.书架可以放下所有的书,所以Frank首先将书按高度顺序排列在书架上.但是Frank发现,由 ...

  7. LARK BOARD开发板试用第一篇-上电测试学习

    1. 先看下板子外观,做工很不错 2. 主芯片的型号是,SoC 为 Cyclone V SX 系列的 5CSXFC6D6F31,不仅在芯片中包含传统的 FPGA 架构,还集成了基于 ARM Corte ...

  8. beego orm

    http://beego.me/docs/mvc/model/overview.md go get github.com/astaxie/beego/orm Simple Usage package ...

  9. 阿牛的EOF牛肉串(递推)

    阿牛的EOF牛肉串 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  10. 推荐5个机器学习Python 库,国内外评价超高

    机器学习令人无比神往,但从事这个工作的人可能并不这么想. 机器学习的工作内容往往复杂枯燥又困难——通过大量重复工作进行提升必不可少: 汇总工作流及传输渠道.设置数据源以及在内部部署和云部署的资源之间来 ...