机器学习模型-支持向量机(SVM)
二.代码实现
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import warnings
warnings.filterwarnings('ignore')
data = datasets.load_breast_cancer()
x = data.data;y = data.target
y[y==0] = -1
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=1)
omega = np.zeros(x.shape[1])
b = 0
lr = 0.01
C = 1
maxgen = 500
for L in range(maxgen):
error = 1 - (np.dot(x_train,omega)+b)*y_train
index = np.argmax(error)
if error[index] > 0:
omega = (1-lr)*omega + lr*C*y_train[index]*x_train[index,:]
b = b + lr*C*y_train[index]
else:
break
predict_train = np.sign(np.dot(x_train,omega)+b)
train_acc = len(np.where(predict_train==y_train)[0])/len(y_train)
predict_test = np.sign(np.dot(x_test,omega)+b)
test_acc = len(np.where(predict_test==y_test)[0])/len(y_test)
print('Train acc = ',round(train_acc,4),' Test acc = ',round(test_acc,4))
三.SMO算法实现
import numpy as np
from sklearn import datasets
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import warnings
warnings.filterwarnings('ignore')
data = datasets.load_breast_cancer()
x = data.data;x = preprocessing.MinMaxScaler().fit_transform(x)
y = data.target;y[y==0] = -1
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=1)
alpha = np.zeros(x_train.shape[0])
b = 0
C = 1
p = np.zeros(x_train.shape[0])
maxgen = 100
def gramMat(x):
v = []
for i in x:
for j in x:
k = np.dot(i,j.T)
v.append(k)
gram = np.array(v).reshape(len(x),len(x))
return gram
K = gramMat(x_train)
def selectFirstSample(K,y,p,alpha,b,C):
threshold = 0.001
c = y*p-1
c1 = c.copy();c2=c.copy();c3=c.copy()
c1[(alpha > 0) & (c >= 0)] = 0
c2[((alpha==0) | (alpha==C)) & (c==0)] = 0
c3[(alpha < 0) & (c www.tiaotiaoylzc.com/ <= 0)] = 0
error = c1**2+c2**2+c3**2
index = np.argmax(error)
if error[index] >= threshold:
return index
else:
return None
def selectSecondSample(id1,y_train):
id2 = np.random.randint(www.ysyl157.com len(y_train))
while id1 == id2:
id2 = np.random.randint(len(y_train))
return id2
def boundary(y,id1,id2,C):
if y[id1] =www.xgll521.com= y[id2]:
lb = max(0,alpha[id1]+alpha[id2]-C)
ub = min(C,alpha[id1]+alpha[id2])
else:
lb = max(0,alpha[id2]-alpha[id1])
ub = min(C,C+alpha[id2]-alpha[id1])
return lb,ub
def updateAlpha(K,y,p,id1,id2,lb,ub,C):
old_alpha1 = alpha[id1];old_alpha2 = alpha[id2]
p1 = p[id1];p2 = p[id2]
y1 = y[id1];y2 = y[id2]
E1 = p1 - y1;E2 = p2 - y2
beta = 2*K[id1,id2] - K[id1,id1] - K[id2,id2]
new_alpha2 = old_alpha2 - y2*(E1-E2)/beta
if new_alpha2 > ub:
new_alpha2 = ub
if new_alpha2 < lb:
new_alpha2 www.taohuaqing178.com= lb
alpha[id2] = new_alpha2
new_alpha1 = old_alpha1 - y1*y2*(new_alpha2 - old_alpha2)
alpha[id1] = new_alpha1
deta1 = new_alpha1 - old_alpha1
deta2 = new_alpha2 - old_alpha2
dw = [y1*deta1,y2*deta2]
b1 = -E1 - y1*K[id1,id1]*deta1 - y2*K[id1,id2]*deta2
b2 = -E2 - y1*K[id1,id2]*deta1 - y2*K[id2,id2]*deta2
if new_alpha1 >=0 and new_alpha1 <= C:
db = b1
elif new_alpha2 >www.thd178.com/ =0 and new_alpha2 <= C:
db = b2
else:
db = (b1 + b2)/2
p = p + dw[0]*K[id1,:].T + dw[1]*K[id2,:].T + db
return p
for L in range(maxgen):
id1 = selectFirstSample(K,y_train,p,alpha,b,C)
id2 = selectSecondSample(id1,y_train)
lb,ub = boundary(y_train,id1,id2,C)
p = updateAlpha(K,y,p,id1,id2,lb,ub,C)
index = np.argmax((alpha!=0)&(alpha!=C))
b = y_train[index] - np.sum(alpha*y_train*K[:,index])
predict_train = np.sign(np.sum(alpha*y_train*K,axis=0)+b)
train_acc = len(np.where(predict_train==y_train)[0])/len(y_train)
predict_test = []
for arr in x_test:
v = np.sum(alpha*y_train*np.dot(x_train,arr.T))+b
predict_test.append(np.sign(v))
test_acc = len(np.where(predict_test==y_test)[0])/len(y_test)
print('self-written ==> Train acc = ',round(train_acc,4),' Test acc = ',round(test_acc,4))
model = SVC()
model.fit(x_train,y_train)
train_acc = model.score(x_train,y_train)
test_acc = model.score(x_test,y_test)
print('sklearn ==> Train acc = ',round(train_acc,4),' Test acc = ',round(test_acc,4))
机器学习模型-支持向量机(SVM)的更多相关文章
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
- 机器学习:支持向量机(SVM)
SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...
- 机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...
- 【机器学习】支持向量机SVM
关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...
- python机器学习之支持向量机SVM
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...
- 机器学习(十一) 支持向量机 SVM(上)
一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...
- 机器学习-5 支持向量机SVM
一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目 ...
- 机器学习(十一) 支持向量机 SVM(下)
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
随机推荐
- 【tp5.1】微信公众号授权登录及获取信息录入数据库
微信公众号开发文档链接:https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1445241432 微信公众号授权登录分为两种: 1.以 ...
- 第四课:PHP 变量
变量指程序中使用的数值是可以变化的量,与常量(一旦被定义,就无法改变)相反. 变量是用于存储信息的"容器": 实例 <?php $x=5; $y=6; $z=$x+$y; e ...
- 在Pycharm中导入第三方模块库(诸如:matplotlib、numpy等)
在Pycharm中导入第三方模块库 一.打开pycharm: 二.点击菜单上的“file” -> “setting”: 三.步骤二完成后出现界面如下所示.选中你的项目(比如thisyan Pro ...
- Hadoop(5)-Hive
在Hadoop的存储处理方面提供了两种不同的机制,一种是之前介绍过的Hbase,另外一种就是Hive,有关于Hbase,它是一种nosql数据库的一种,是一种数据库,基于分布式的列式存储,适合海量数据 ...
- 初识python 字符串 列表 字典相关操作
python基础(一): 运算符: 算术运算: 除了基本的+ - * / 以外,还需要知道 : // 为取整除 返回的市商的整数部分 例如: 9 // 2 ---> 4 , 9.0 // ...
- dotnet core 项目
项目 常用命令 我们使用dotnet core 命令行来创建项目及进行编译,发布等,比较常用的dotnet core 命令 如下: dotnet new [arguments] [options] 创 ...
- YSZOJ:#247. [福利]可持久化线段树 (最适合可持久化线段树入门)
题目链接:https://syzoj.com/problem/247 解题心得: 可持久化线段树其实就是一个线段树功能的加强版,加强在哪里呢?那就是如果一颗普通的线段树多次修改之后还能知道最开始的线段 ...
- EF使用报错说缺少引用
在程序中已经引用了EF,也引用了System.Data,但是一起报这个错误: 在类前面也已经写了 using System.Data.Entity,百思不得其解,最后才发 ...
- 「日常训练」 不容易系列之(3)—— LELE的RPG难题 (HDU 2045)
题目简述 有排成一行的n" role="presentation">nn个方格,用红(Red).粉(Pink).绿(Green)三色涂每个格子,每格涂一色,要求任何 ...
- Linux-Shell脚本编程-学习-1-Linux基本命令
在学习Linux-Shell脚本编程之前,我们需要学习一定的Linux基本命令,不然在后面学习Shell脚本编程的的时候,我们就呵呵了. 我学习所用的系统是Ubuntu 16.04版本 也没有什么规则 ...