FPGA算法学习(1) -- Cordic(圆周系统之向量模式)
旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。
旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。
如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为
根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为
这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为
现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。
将式(1.1)代入到式(1.3)中可得
用矩阵形式表示为:
旋转了i次以后,可以得到:
最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:
#include <stdio.h>
#include <stdlib.h>
double cordic_v(double x, double y);
int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n 极角为 = %f \n",alfa);
return 0;
}
double cordic_v(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
0.006135884649154,0.003067956762966,0.001533980186285,
7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
};
const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0; //第一次旋转角度为45°
for( i=0; i<15;i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
}
else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f\n", i+1, angle,angleSum );
angle /= 2;
}
return angleSum;
}
经过旋转模式的推导,向量模式的伪旋转公式,可表示为
C语言描述过程,如下:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double cordic_v(double x, double y);
double r = 0.0; //定义一个模长全局变量
int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n极角 = %5f, 模长 = %5f\n",alfa,r);
return 0;
}
double cordic_v(double x, double y)
{
const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349,
3.576334375, 1.789910608, 0.8951737102, 0.4476141709,
0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262,
0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
}; //旋转角度
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
r = sqrt(x*x+y*y);
for( i=0; i<16;i++)
{
if(y > 0)
{
x_new = x + y/(1<<i);
y_new = y - x/(1<<i);
x = x_new;
y = y_new;
angleSum += theta[i];
}
else
{
x_new = x - y/(1<<i);
y_new = y + x/(1<<i);
x = x_new;
y = y_new;
angleSum -= theta[i];
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f\n", i+1,theta[i],angleSum,y );
}
return angleSum;
}
同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。
参考
《基于FPGA的数字信号处理(第2版)》——高亚军著
FPGA算法学习(1) -- Cordic(圆周系统之向量模式)的更多相关文章
- FPGA算法学习(1) -- Cordic(Verilog实现)
上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...
- FPGA算法学习(1) -- Cordic(圆周系统之旋转模式)
三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...
- Cordic算法——圆周系统之向量模式
旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...
- Cordic算法——圆周系统之旋转模式
三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...
- python学习之算法、自定义模块、系统标准模块(上)
算法.自定义模块.系统标准模块(time .datetime .random .OS .sys .hashlib .json和pickle) 一:算法回顾: 冒泡算法,也叫冒泡排序,其特点如下: 1. ...
- Python之路,Day21 - 常用算法学习
Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...
- 《如何学习基于ARM嵌入式系统》笔记整理
author:Peong time:20190603 如何学习基于ARM嵌入式系统 一.嵌入式系统的概念 从硬件上讲,将外围器件,与CPU集成在一起. 从操作系统上讲,定制符合要求的系统内核 从应用上 ...
- paxos算法学习总结
核心思想 分布式系统架构下如何让整体尽快达成一致观点,也就是多个不同观点收敛到一个观点的过程. 难点 可能会发生少数节点故障,但绝不是大面积故障,不然系统也没法正常工作. 由于存在单点故障,因此不可能 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
随机推荐
- React学习笔记 - Hello World
React Learn Note 1 React学习笔记(一) 标签(空格分隔): React JavaScript 前.Hello World 1. 创建单页面应用 使用Create React A ...
- Scrum第一次冲刺
1.项目描述 为了长大学子的便捷,避免遭遇官网爆炸而无法查询成绩,课表等相关个人信息.我们决定开发长大Tips(分担官网的压力). 2.基本业务 用户可以通过学号加密码登入长大Tips 用户可以在在用 ...
- HDU 6214 最小割边
双倍经验题:HDU 6214,3987 求最小割的最小边. 方案一: 首先跑最大流,这个时候割上都满载了,于是将满载的边 cap = 1,其他 inf ,再跑最大流,这个时候限定这个网络的关键边就是那 ...
- Uva 11419 我是SAM
题目链接:https://vjudge.net/problem/UVA-11419 题意:一个网格里面有一些目标,可以从某一行,某一列发射一发子弹,可以打穿: 求最少的子弹,和在哪里打? 分析: 听说 ...
- POJ1990 MooFest
嘟嘟嘟 题目大意:一群牛参加完牛的节日后都有了不同程度的耳聋(汗……),第i头牛听见别人的讲话,别人的音量必须大于v[i],当两头牛i,j交流的时候,交流的最小声音为max{v[i],v[j]}*他们 ...
- 【转】Android手机分辨率基础知识(DPI,DIP计算)
1.术语和概念 术语 说明 备注 Screen size(屏幕尺寸) 指的是手机实际的物理尺寸,比如常用的2.8英寸,3.2英寸,3.5英寸,3.7英寸 摩托罗拉milestone手机是3.7英寸 A ...
- Swift学习——格式控制符和元组流程控制(二)
Swift中的格式控制符和元祖 (1)首先介绍一下元祖,元祖是关系型数据库中 比如学生表中的姓名,年龄,电话等 定义例如以下 var studentinfo = ("jhon", ...
- doppia代码支持
stixels_t在stixel.hpp里,存储class stixel的vector
- Docker 安装tomcat7
[root@VM_0_7_centos ~]# docker pull tomcat:7-jre7 [root@VM_0_7_centos ~]# docker run -di --name=tomc ...
- 在idea配置jetty和创建(包、文件)javaWeb以及Servlet简单实现
在创建之前要安装好jetty jetty官网链接:https://jettylife.com/ 现在进行创建项目: 需要按照好jdk 现在进行添加jetty 现在进行配置 完成后ok ok 下面警告的 ...