旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。

旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。

如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为

根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为

这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为

现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。

将式(1.1)代入到式(1.3)中可得

用矩阵形式表示为:

旋转了i次以后,可以得到:

最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:

#include <stdio.h>
#include <stdlib.h> double cordic_v(double x, double y); int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n 极角为 = %f \n",alfa);
return 0;
}
double cordic_v(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
0.006135884649154,0.003067956762966,0.001533980186285,
7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
}; const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0; //第一次旋转角度为45°
for( i=0; i<15;i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
} else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f\n", i+1, angle,angleSum );
angle /= 2;
}
return angleSum;
}

经过旋转模式的推导,向量模式的伪旋转公式,可表示为

C语言描述过程,如下:

#include <stdio.h>
#include <stdlib.h>
#include <math.h> double cordic_v(double x, double y);
double r = 0.0; //定义一个模长全局变量 int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n极角 = %5f, 模长 = %5f\n",alfa,r);
return 0;
}
double cordic_v(double x, double y)
{
const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349,
3.576334375, 1.789910608, 0.8951737102, 0.4476141709,
0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262,
0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
}; //旋转角度
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
r = sqrt(x*x+y*y);
for( i=0; i<16;i++)
{
if(y > 0)
{
x_new = x + y/(1<<i);
y_new = y - x/(1<<i);
x = x_new;
y = y_new;
angleSum += theta[i];
} else
{
x_new = x - y/(1<<i);
y_new = y + x/(1<<i);
x = x_new;
y = y_new;
angleSum -= theta[i];
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f\n", i+1,theta[i],angleSum,y );
}
return angleSum;
}

同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。

参考

FPGA算法学习(1) -- Cordic(圆周系统之向量模式)的更多相关文章

  1. FPGA算法学习(1) -- Cordic(Verilog实现)

    上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...

  2. FPGA算法学习(1) -- Cordic(圆周系统之旋转模式)

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  3. Cordic算法——圆周系统之向量模式

    旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...

  4. Cordic算法——圆周系统之旋转模式

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  5. python学习之算法、自定义模块、系统标准模块(上)

    算法.自定义模块.系统标准模块(time .datetime .random .OS .sys .hashlib .json和pickle) 一:算法回顾: 冒泡算法,也叫冒泡排序,其特点如下: 1. ...

  6. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  7. 《如何学习基于ARM嵌入式系统》笔记整理

    author:Peong time:20190603 如何学习基于ARM嵌入式系统 一.嵌入式系统的概念 从硬件上讲,将外围器件,与CPU集成在一起. 从操作系统上讲,定制符合要求的系统内核 从应用上 ...

  8. paxos算法学习总结

    核心思想 分布式系统架构下如何让整体尽快达成一致观点,也就是多个不同观点收敛到一个观点的过程. 难点 可能会发生少数节点故障,但绝不是大面积故障,不然系统也没法正常工作. 由于存在单点故障,因此不可能 ...

  9. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

随机推荐

  1. cropperjs的高度过大(container height too much)

    cropperjs的高度过大(container height too much) 标签(空格分隔): JavaScript 业务需要web头像裁切,用canvas写了个demo卡成一匹马,于是就去寻 ...

  2. centos下安装lnmp各个版本的几种方法

    首先我们用一种yum的方法安装,我们需要rpm源 默认的版本太低了,手动安装有一些麻烦,想采用Yum安装的可以使用下面的方案: 1.检查当前安装的PHP包 yum list installed | g ...

  3. 扫描FTP,保存文件

    1.需求:某公司ftp服务器中一个文件夹中有30个文件(文件名字是不同的),每五分钟产生一个新的文件,同时删除这三十个文件中最早产生的文件,该文件夹中始终保持30个文件. 现在需要采集一周的数据做研究 ...

  4. June 07th 2017 Week 23rd Wednesday

    Failure is the condiment that gives success its flavor. 失败是让成功变美味的调味料. There are kinds of flavors in ...

  5. Windos下Android(ADT Bundle)配置NDK的两种方法------ADT、Cygwin、NDK配置汇总(转)

    转自:http://blog.csdn.net/yanzi1225627/article/details/16897877 Android开发环境由windows下ADT Bundle搭建,且按前文h ...

  6. arcgis for javascript ArcGISDynamicMapServiceLayer 过滤图层点

    记录下过滤 ArcGISDynamicMapServiceLayer 图层服务的方法 function filterArcGISDynamicMapServiceLayer(){ map.graphi ...

  7. Uva 11294 婚姻

    题目链接:https://vjudge.net/contest/166461#problem/C 题意: n对夫妻,有m对人吵过架,不能排在同一边,求新娘的一边的人: 分析: 每对夫妻,看成两个点,女 ...

  8. 3676: [Apio2014]回文串

    3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1740 Solved: 744 [Submit][Status ...

  9. HashMap中的equals和hashCode

    HashMap的存储方式 HashMap的实现方式是数组链,不同的对象根据其哈希码(hashCode方法的返回值)找到对应的数组下标,然后存入数组.不同的对象有相同的哈希码时怎么办?这就由数组链中的链 ...

  10. HDU 1372 Knight Moves(最简单也是最经典的bfs)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1372 Knight Moves Time Limit: 2000/1000 MS (Java/Othe ...