本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用。

1.数据集

ImageNet [6], which consists of  over 15 million labeled high-resolution images in over 22,000 categories.

here,ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are roughly 1.2 million training images, 50,000 validation images, and
150,000 testing images.我们在这从ImageNet 中生成一个1000类,每类大约1000张图片,即大约120万个训练样例,50000个验证样例,150,000个测试样例。

ImageNet consists of variable-resolution images, while our system requires a constant input dimensionality. Therefore, we down-sampled the images to a fixed resolution of 256 × 256. Given a
rectangular image, we first rescaled the image such that the shorter side was of length 256, and then cropped out the central 256×256 patch from the resulting image. We did not pre-process the images
in any other way, except for subtracting the mean activity over the training set from each pixel. So we trained our network on the (centered) raw RGB values of the pixels.  

2.网络架构  The architecture of our network is summarized in Figure 2. It contains eight learned layers —five convolutional and three fully-connected

2.1 activation function

  using RELU Nonlinearity,The standard way to model a neuron’s output f as
a function of its input x is with f (x) = tanh(x) or f (x) = (1 + e −x ) −1 . In terms of training time
with gradient descent, these saturating nonlinearities are much slower than the non-saturating nonlinearity f (x) = max(0, x).

  Deep convolutional neural networks with ReLUs train several times faster than their equivalents with tanh units.

2.2 Training on Multiple GPUs

2.3  Local Response Normalization

2.4 Overlapping Pooling

  Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (e.g.,
[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling units spaced s pixels apart, each summarizing a neighborhood of size z × z centered at the location
of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our
network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by 0.4% and 0.3%, respectively, as compared with the non-overlapping scheme s = 2, z = 2, which produces
output of equivalent dimensions. We generally observe during training that models with overlapping pooling find it slightly more difficult to overfit.

当池化窗口的大小为z*z时,如果stride<z ,则进行Overlapping pooling,如果stride=z ,则进行一般的池化操作

2.5 Overall Architectur 

  Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains eight layers with weights; the first five are convolutional and the remaining three are fully-
connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression
objective, which is equivalent to maximizing the average across training cases of the log-probability of the correct label under the prediction distribution. The kernels of the second, fourth, and fifth convolutional

layers are connected only to those kernel maps in the previous layer which reside on the same GPU (see Figure 2). The kernels of the third convolutional layer are connected to all kernel maps in the second layer.

The neurons in the fully-connected layers are connected to all neurons in the previous layer. Response-normalization layers follow the first and second convolutional layers. Max-pooling layers, of the kind described in Section
3.4, follow both response-normalization layers as well as the fifth convolutional layer. The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
The first convolutional layer filters the 224 × 224 × 3 input image with 96 kernels of size 11 × 11 × 3with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring 

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 × 5 × 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3 × 3 × 192. The fully-connected layers have 4096 neurons each. 

 3.降低overfitting

3.1 数据增广

  The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

  The first form of data augmentation consists of generating image translations and horizontal reflections. We do this by extracting random 224 × 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches 4 . This increases the size of our training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches. The second form of data augmentation consists of altering the intensities of the RGB channels in training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1.

3.2 dropout

Combining the predictions of many different models is a very successful way to reduce test errors[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are “dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture, but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network exhibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

4. Learning details

We trained our models using stochastic gradient descent with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer: it reduces the model’s training error. The update rule for
weight w was

5 . Results

Paper: ImageNet Classification with Deep Convolutional Neural Network的更多相关文章

  1. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  2. ImageNet Classification with Deep Convolutional Neural Network(转)

    这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...

  3. 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》

    一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...

  4. [notes] ImageNet Classification with Deep Convolutional Neual Network

    Paper: ImageNet Classification with Deep Convolutional Neual Network Achievements: The model address ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  7. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  8. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  9. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

随机推荐

  1. ZOJ-Big string(服气思维)

    个人心得:我在分治上看到的,但是感觉跟分治没关系,一眼想到斐波那契数可以找到此时n的字符串,但是无法精确到字母,题解的思路 真是令人佩服,以BA为基准,然后只要此时的长度大于7那么必然可以减去最大的斐 ...

  2. 剑指offer-第六章面试中的各项能力(翻转单词的顺序VS左旋转字符串)

    //题目1:翻转单词顺序例如“Hello world!”翻转后为world! Hello. //思路:首先翻转整个字符串,然后再分别翻转每个单词. //题目2:左旋转字符串,是将字符串的前面几个(n) ...

  3. uoj #190. 【集训队互测2016】消失的源代码 提交答案题

    Test 1: 发现是一个字母表的映射 把 \('a' \to 'z'\) 打进去找出映射就好了QAQ . Test 2: 求助 \(dalao\) 得知的点.. 答案是 : \(2016x^2 + ...

  4. AES前后加密算法代码

    首先下载aes.js加密工具类: 本文采用的是 AES/ECB/PKCS5Padding的加密方式进行加密的: js加密写法如下: <!DOCTYPE html> <html lan ...

  5. maven搭建

    http://blog.csdn.net/zhshulin/article/details/30779873 http://blog.csdn.net/zhshulin/article/details ...

  6. bzoj 1085 [SCOI2005]骑士精神——IDA*

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 迭代加深搜索. 估价函数是为了预计步数来剪枝,所以要优于实际步数. 没错,不是为了确定 ...

  7. Jmeter ----关于上传图片接口

    转自:http://www.cnblogs.com/linglingyuese/p/4514808.html 需求 1 2 3 4 5 6 7 8 9 post上传   Request: { &quo ...

  8. React组件性能优化总结

    性能优化的思路 影响网页性能最大的因素是浏览器的重排(repaint)和重绘(reflow). React的Virtual DOM就是尽可能地减少浏览器的重排和重绘. 从React渲染过程来看,如何防 ...

  9. npm包的发布

    假设该待发布包在你本地的项目为 project1 包的本地安装测试 在发布之前往往希望在本地进行安装测试.那么需要一个其他的项目来本地安装待发布项目. 假设该其他项目为project2.假设proje ...

  10. 转: SQL中的where条件,在数据库中提取与应用浅析

    SQL中的where条件,在数据库中提取与应用浅析 http://hedengcheng.com/?p=577 1问题描述 一条SQL,在数据库中是如何执行的呢?相信很多人都会对这个问题比较感兴趣.当 ...