Codeforces 361D Levko and Array(二分)(DP)
Levko and Array
2 seconds
256 megabytes
standard input
standard output
Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this array at all.
Levko thinks that the beauty of the array a directly depends on value c(a), which can be calculated by the formula:
The less value c(a) is, the more beautiful the array is.
It’s time to change the world and Levko is going to change his array for the better. To be exact, Levko wants to change the values of at most k array elements (it is allowed to replace the values by any integers). Of course, the changes should make the array as beautiful as possible.
Help Levko and calculate what minimum number c(a) he can reach.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 2000). The second line contains space-separated integers a1, a2, ... , an ( - 109 ≤ ai ≤ 109).
A single number — the minimum value of c(a) Levko can get.
5 2
4 7 4 7 4
0
3 1
-100 0 100
100
6 3
1 2 3 7 8 9
1
In the first sample Levko can change the second and fourth elements and get array: 4, 4, 4, 4, 4.
In the third sample he can get array: 1, 2, 3, 4, 5, 6.
【分析】题意很简单,就是给你一个数组,定义V为max(abs(a[i+1]-a[i])),给你K次改动机会,就是最多可以改动数组中的K个数,使得V最小。求最小的V。
这题思路好漂亮啊(可能是我很菜没见过吧)。先二分答案,然后看看满足这个答案的情况下需要改动多少数,如果需要改动的数的个数<=K,则保存答案继续二分。
强无敌。。。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
typedef long long ll;
using namespace std;
const int N = 3e5+;
const int M = 1e6+;
ll dp[];
ll a[];
ll n,k;
ll Dp_Slove(ll mid) {
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[]=;
for(ll i=; i<=n; i++) {
dp[i]=i-;
for(ll j=i-; j>=; j--) {
if(abs(a[i]-a[j])<=mid*(i-j)) {
dp[i]=min(dp[i],dp[j]+i-j-);
}
}
if(dp[i]+n-i<=k)return ;
}
if(dp[n]<=k)return ;
else return ;
}
int main() {
while(~scanf("%lld%lld",&n,&k)) {
for(ll i=; i<=n; i++) {
scanf("%lld",&a[i]);
}
ll l=,r=;
ll ans=;
while(r>=l) {
ll mid=(l+r)/;
if(Dp_Slove(mid)) {
r=mid-;
ans=mid;
} else l=mid+;
}
printf("%lld\n",ans);
}
}
Codeforces 361D Levko and Array(二分)(DP)的更多相关文章
- CodeForces - 361D Levko and Array
Discription Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this ...
- codeforces 361 D. Levko and Array(dp+二分)
题目链接:http://codeforces.com/contest/361/problem/D 题意:最多可以修改K次数字,每次修改一个数字变成任意值,C=max(a[i+1]-a[i]):求操作之 ...
- codeforces 487B B. Strip(RMQ+二分+dp)
题目链接: B. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Codeforces 749E Gosha is hunting 二分+DP
很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[ ...
- 有意思的DP(CF360B Levko and Array)
刚才面试了一个蛮有意思的DP题目,脑子断片,没写出来,不过早上状态还是蛮好的 一个长度为n的序列最多改变k次,使相邻两数之差绝对值的最大值最小 三维的dp我先尝试写一下 Codeforces 360B ...
- CF360B Levko and Array (二分查找+DP)
链接:CF360B 题目: B. Levko and Array time limit per test 2 seconds memory limit per test 256 megabytes i ...
- [codeforces 360]A. Levko and Array Recovery
[codeforces 360]A. Levko and Array Recovery 试题描述 Levko loves array a1, a2, ... , an, consisting of i ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)
第一次看到这种骚东西, 期望还能二分的啊??? 因为存在重置的操作, 所以我们再dp的过程中有环存在. 为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ...
随机推荐
- 【题解】HNOI2010合唱队
我果然还是太弱了呜呜呜……洛谷P3205 区间dp:注意到一段区间最两侧的人必然是最后加入队伍的所以由此我们可以分成两种情况来讨论. 一种是最后一个加入的人是左边的,另一种是右边的.那么状态:dp[i ...
- WM_CTLCOLOR消息
文章参考地址:http://blog.csdn.net/hisinwang/article/details/8070393 在每个控件开始绘制之前,都会向其父窗口发送WM_CTLCOL ...
- 【CF MEMSQL 3.0 A. Declined Finalists】
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- [fzu 2273]判断两个三角形的位置关系
首先判断是否相交,就是枚举3*3对边的相交关系. 如果不相交,判断包含还是相离,就是判断点在三角形内还是三角形外.两边各判断一次. //http://acm.fzu.edu.cn/problem.ph ...
- oracle的sequece的使用(主键自增长)
在Oracle数据库中,sequence等同于序列号,每次取的时候sequence会自动增加,一般会作用于需要按序列号排序的地方. 1.Create Sequence (注释:你需要有CREATE S ...
- 使用http_load网站压力测试
http_load用以测试web服务器的吞吐量与负载.但是它不同于大多数压力测试工具, 它可以以一个单一的进程运行,一般不会把客户机搞死.它可以自定义测试的URL列表 下载:http://acme.c ...
- 新手如何更换自己喜欢的背景以及此背景的css码
以下内容为转载(对于css码可以自己写当然也可以去网上搜现成的): 更换背景教学:https://jingyan.baidu.com/album/fc07f9897c730412ffe519c0.ht ...
- a标签的download属性简介
最近在工作中需要一个前端直接下载静态文件的需求,之前有粗略的了解过a标签的download属性,通过download和href属性可以实现文件的下载. 简介 HTML <a> 元素 (或锚 ...
- ByteUtil 工具类
ByteUtil 工具类 import java.io.FileOutputStream; import java.io.OutputStream; import java.nio.charset.C ...
- Java并发(9)- 从同步容器到并发容器
引言 容器是Java基础类库中使用频率最高的一部分,Java集合包中提供了大量的容器类来帮组我们简化开发,我前面的文章中对Java集合包中的关键容器进行过一个系列的分析,但这些集合类都是非线程安全的, ...