# -*-  coding:utf-8 -*-
'''
CSV 常用API 1)reader(csvfile[, dialect='excel'][, fmtparam]),主要用于CSV 文件的读取,返回一个
reader 对象用于在CSV 文件内容上进行行迭代。
参数:
csvfile,需要是支持迭代(Iterator)的对象,通常对文件(file)对象或者列表(list)对象都是适用的,并且每次调用next() 方法的返回值是字符串(string);
dialect 的默认值为excel,与excel 兼容;
fmtparam 是一系列参数列表,主要用于需要覆盖默认的Dialect设置的情形 2)csv.writer(csvfile, dialect='excel', **fmtparams),用于写入CSV 文件。 with open('data.csv', 'wb') as csvfile:
csvwriter = csv.writer(csvfile, dialect='excel',delimiter="|",quotechar='"',
quoting=csv.QUOTE_MINIMAL)
csvwriter .writerow(["1/3/09 14:44","'Product1'","1200''","Visa","Gouya"])
# 写入行
输出形式为: 1/3/09 14:44|'Product1'|1200''|Visa|Gouya 3)csv.DictReader(csvfile, fieldnames=None, restkey=None, restval=None,
dialect='excel',*args, **kwds),同reader() 方法类似,不同的是将读入的信息映射到一个字典中去,其中字
典的key 由fieldnames 指定,该值省略的话将使用CSV 文件第一行的数据作为key 值。如果
读入行的字段的个数大于filednames 中指定的个数,多余的字段名将会存放在restkey 中,而
restval 主要用于当读取行的域的个数小于fieldnames 的时候,它的值将会被用作剩下的key对应的值。 4)csv.DictWriter(csvfile, fieldnames, restval='', extrasaction='raise',
dialect='excel', *args,**kwds),用于支持字典的写入。 '''
import csv
#DictWriter
with open('C:\\test.csv', 'wb') as csv_file:
# 设置列名称
FIELDS = ['Transaction_date', 'Product', 'Price', 'Payment_Type']
writer = csv.DictWriter(csv_file, fieldnames=FIELDS)
# 写入列名称
writer.writerow(dict(zip(FIELDS, FIELDS)))
d = {'Transaction_date':'1/2/09 6:17','Product':'Product1','Price':'',\
'Payment_Type':'Mastercard'}
# 写入一行
writer.writerow(d) with open('C:\\test.csv', 'rb') as csv_file:
for d in csv.DictReader(csv_file):
print d '''
Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,,它
不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV、HDF5、HTML 等,
能够提供高效的大型数据处理。其支持的两种数据结构——Series 和DataFrame——是数据处
理的基础。下面先来介绍这两种数据结构。 Series:它是一种类似数组的带索引的一维数据结构,支持的类型与NumPy 兼容。如
果不指定索引,默认为0 到N-1。通过obj.values() 和obj.index() 可以分别获取值和索
引。当给Series 传递一个字典的时候,Series 的索引将根据字典中的键排序。如果传
入字典的时候同时重新指定了index 参数,当index 与字典中的键不匹配的时候,会
出现时数据丢失的情况,标记为NaN。 import pandas
#在pandas 中用函数isnull() 和notnull() 来检测数据是否丢失。 >>> obj1 = Series([1, 'a', (1,2), 3], index=['a', 'b', 'c', 'd'])
>>> obj1#value 和index 一一匹配
a 1
b a
c (1, 2)
d 3
dtype: object
>>> obj2=Series({"Book":"Python","Author":"Dan","ISBN":"011334","Price":25},inde
x=['book','Author','ISBM','Price'])
>>> obj2.isnull()
book True # 指定的index 与字典的键不匹配,发生数据丢失
Author False
ISBM True # 指定的index 与字典的键不匹配,发生数据丢失
Price False
dtype: bool ‰DataFrame :类似于电子表格,其数据为排好序的数据列的集合,每一列都可以是
不同的数据类型,它类似于一个二维数据结构,支持行和列的索引。和Series 一
样,索引会自动分配并且能根据指定的列进行排序。使用最多的方式是通过一个长
度相等的列表的字典来构建。构建一个DataFrame 最常用的方式是用一个相等长度
列表的字典或NumPy 数组。DataFrame 也可以通过columns 指定序列的顺序进行
排序。 >>> data = {'OrderDate': ['1-6-10', '1-23-10', '2-9-10', '2-26-10', '3-15-10'],
... 'Region': ['East', 'Central', 'Central', 'West', 'E ast'],
... 'Rep': ['Jones', 'Kivell', 'Jardine', 'Gill', 'Sorv ino']}
>>>
>>> DataFrame(data,columns=['OrderDate','Region','Rep'])# 通过字典构建,按照cloumns 指定的顺序排序
OrderDate Region Rep
0 1-6-10 East Jones
1 1-23-10 Central Kivell
2 2-9-10 Central Jardine
3 2-26-10 West Gill
4 3-15-10 East Sorvino #Pandas 中处理CSV 文件的函数主要为read_csv() 和to_csv() 这两个,其中read_csv() 读取CSV 文件的内容并返回DataFrame,to_csv() 则是其逆过程。 1)指定读取部分列和文件的行数。具体的实现代码如下:
df = pd.read_csv("SampleData.csv",nrows=5,usecols=['OrderDate','Item','Total']) 方法read_csv() 的参数nrows 指定读取文件的行数,usecols 指定所要读取的列的列名,
如果没有列名,可直接使用索引0、1、...、n-1。上述两个参数对大文件处理非常有用,可
以避免读入整个文件而只选取所需要部分进行读取 2)设置CSV 文件与excel 兼容。dialect 参数可以是string 也可以是csv.Dialect 的实例。
如果将图4-2 所示的文件格式改为使用“ |”分隔符,则需要设置dialect 相关的参数。error_
bad_lines 设置为False,当记录不符合要求的时候,如记录所包含的列数与文件列设置不相
等时可以直接忽略这些列。下面的代码用于设置CSV 文件与excel 兼容,其中分隔符为“| ”,
而error_bad_lines=False 会直接忽略不符合要求的记录。 >>> dia = csv.excel()
>>> dia.delimiter="|" #设置分隔符
>>> pd.read_csv("SD.csv")
OrderDate|Region|Rep|Item|Units|Unit Cost|Total
0 1-6-10|East|Jones|Pencil|95|1.99 |189.05
1 1-23-10|Central|Kivell|Binder|50|19.99 |999.50...
>>> pd.read_csv("SD.csv",dialect = dia,error_bad_lines=False)
Skipping line 3: expected 7 fields, saw 10 # 所有不符合格式要求的列将直接忽略
OrderDate Region Rep Item Units Unit Cost Total
0 1-6-10 East Jones Pencil 95 1.99 189.05 3)对文件进行分块处理并返回一个可迭代的对象。分块处理可以避免将所有的文件载入
内存,仅在使用的时候读入所需内容。参数chunksize 设置分块的文件行数,10 表示每一块
包含10 个记录。将参数iterator 设置为True 时,返回值为TextFileReader,它是一个可迭代对
象。来看下面的例子,当chunksize=10、iterator=True 时,每次输出为包含10 个记录的块。
>>> reader = pd.read_table("SampleData.csv",chunksize=10,iterator=True)
>>> reader
<pandas.io.parsers.TextFileReader object at 0x0314BE70>
>>> iter(reader).next() # 将TextFileReader 转换为迭代器并调用next 方法
OrderDate,Region,Rep,Item,Units,Unit Cost,Total # 每次读入10 行
0 1-6-10,East,Jones,Pencil,95, 1.99 , 189.05
1 1-23-10,Central,Kivell,Binder,50, 19.99 , 999.50
2 2-9-10,Central,Jardine,Pencil,36, 4.99 , 179.64
3 2-26-10,Central,Gill,Pen,27, 19.99 , 539.73
4 3-15-10,West,Sorvino,Pencil,56, 2.99 , 167.44
5 4-1-10,East,Jones,Binder,60, 4.99 , 299.40
6 4-18-10,Central,Andrews,Pencil,75, 1.99 , 149.25
7 5-5-10,Central,Jardine,Pencil,90, 4.99 , 449.10
8 5-22-10,West,Thompson,Pencil,32, 1.99 , 63.68 4)当文件格式相似的时候,支持多个文件合并处理。以下例子用于将3 个格式相同的
文件进行合并处理。 >>> filelst = os.listdir("test")
>>> print filelst # 同时存在3 个格式相同的文件
['s1.csv', 's2.csv', 's3.csv']
>>> os.chdir("test")
>>> dfs =[pd.read_csv(f) for f in filelst]
>>> total_df = pd.concat(dfs) # 将文件合并
>>> total_df
OrderDate Region Rep Item Units Unit Cost Total
0 1-6-10 East Jones Pencil 95 1.99 189.05
1 1-23-10 Central Kivell Binder 50 19.99 999.5 '''

建议42:使用pandas处理大型CSV文件的更多相关文章

  1. 使用Ruby处理大型CSV文件

    处理大型文件是一种内存密集型操作,可能导致服务器耗尽RAM内存并交换到磁盘.让我们看一下使用Ruby处理CSV文件的几种方法,并测量内存消耗和速度性能. Prepare CSV data sample ...

  2. [译]使用Pandas读取大型Excel文件

    上周我参加了dataisbeautiful subreddit上的Dataviz Battle,我们不得不从TSA声明数据集创建可视化.我喜欢这种比赛,因为大多数时候你最终都会学习很多有用的东西. 这 ...

  3. Python 从大型csv文件中提取感兴趣的行

    帮妹子处理一个2.xG 大小的 csv文件,文件太大,不宜一次性读入内存,可以使用open迭代器. with open(filename,'r') as file # 按行读取 for line in ...

  4. 用pandas库对csv文件中的文本数据进行分析处理

    #数据分析 import pandas import csv old_path = r'd:\2000W\200W-400W.csv' f = open(old_path,'r',encoding=' ...

  5. 利用pandas随机切分csv文件

    把数据集随机切分为训练集和测试集 method 1: df = pd.read_csv('data/tgnb_merge.csv', encoding='utf-8') df.drop_duplica ...

  6. 使用Pandas读取大型Excel文件

    import os import pandas as pd HERE = os.path.abspath(os.path.dirname(__file__)) DATA_DIR = os.path.a ...

  7. [Python]-pandas模块-CSV文件读写

    Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,它不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV.HDF5.HTML 等 ...

  8. Python之文件读写(csv文件,CSV库,Pandas库)

    前言 一.Python文件读取 二.读取CSV文件 一.Python文件读取 1. open函数是内置函数之with操作 - 关于路径设置的问题斜杠设置成D:\\文件夹\\文件或是D:/文件夹/文件 ...

  9. 109.大型的csv文件的处理方式

    HttpResponse对象将会将响应的数据作为一个整体返回,此时如果数据量非常大的话,长时间浏览器没有得到服务器的响应,就会超过默认的超时时间,返回超时.而StreamingHttpResponse ...

随机推荐

  1. Hibernate标准查询语言

    Hibernate标准(Criteria)查询语言(HCQL)用于根据具体条件获取记录.Criteria接口提供了应用标准的方法,例如检索薪水大于50000的表的所有记录. HCQL的优势 HCQL提 ...

  2. 多媒体开发之---h264格式详解

    http://blog.csdn.net/bluebirdssh/article/details/6533501 http://blog.csdn.net/d_l_u_f/article/detail ...

  3. Unity3D学习笔记——UIScrollBar和UIScrollView使用

    UIScrollBar和UIScrollView结合使用效果图如下: 一:使用步骤  1.创建一个UIScrollView   2.然后创建一个UIScrollBar 3.打开UIScrollView ...

  4. GoogleMap-------解决不能使用问题

    前言:由于中国大部分Android手机中的Google服务都被阉割掉了,所以导致GoogleMap无法使用,可以用一下方法解决. 1.不能使用GoogleMap 2.若手机上装有安装市场之类的软件可搜 ...

  5. go语言递归创建目录

    import ( "fmt" "os" ) func main() { //创建C:/temp/log文件夹 // err := os.MkdirAll(&qu ...

  6. 用js判断页面是否加载完成

    这可以通过用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == “complete”判断是否加载完成. 可以采用2个div ...

  7. EditTextView

    package com.egojit.android.sops.views.EditText; import android.content.Context; import android.graph ...

  8. unison+inotify 同步web代码并排除指定目录不同步

    unison + inotify  实现web 数据双向同步   unison 是一款跨平台的文件同步对象,不仅支撑本地对本地同步,也支持通过SSH,RSH和Socket 等网络协议进行同步.unis ...

  9. bsd socket 网络通讯必备工具类

    传输数据的时候都要带上包头,包头有简单的又复杂的,简单的只要能指明数据的长度就够了. 这里我写了一个工具类,可以方便地将整型的数据长度转换为长度为 4 的字节数组. 另一方面,可以方便的将长度为 4 ...

  10. MogoDB 分片键

    MongoDB 根据分片键分割 collection 中的文档,然后分配到分片集群的成员中. 分片键可以是一个存在于每个文件中的索引字段或者复合索引字段. MongoDB 使用不同范围的分片键值来分割 ...