Mayor's posters

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题目大意:在一块儿宣传栏中贴宣传单,规定宽度相同,长度不同。按一定顺序贴,给出宣传单的起始和结束位置,这里位置不能忽略成点(而是一段长度),问最后会看到几个宣传单。

解题思路:由于给出的数据范围多大,所以要先进行离散化减少复杂度,因为这里给出的不是”点“是带长度的,所以一般的离散化会出现离散失真,这里可以在离散的时候增加技巧,即在不相邻的数据里增加分隔点,凸显不连续。然后进行线段树成段替换,最后求出整个区间的不同宣传单个数。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int maxn=50000;
int lm[maxn/2],rm[maxn/2];
int col[maxn*4];
int Hash[maxn];
int A[maxn];
int num=0;
int discretization(int l,int r,int key){ //离散化 while(l<=r){ int m=(l+r)/2;
if(key==A[m]){ return m;
}else if(key<A[m]){ r=m-1;
}else{ l=m+1;
}
}
}
void PushDown(int rt){ if(col[rt]!=-1){ col[rt*2]=col[rt];
col[rt*2+1]=col[rt];
col[rt]=-1;
}
}
void update(int rt,int L,int R,int l_ran,int r_ran,int _col){ if(l_ran<=L&&R<=r_ran){ col[rt]=_col;
return ;
}
PushDown(rt);
if(l_ran<=mid)
update(lson,l_ran,r_ran,_col);
if(r_ran>mid)
update(rson,l_ran,r_ran,_col);
}
void query(int rt,int L,int R){ if(col[rt]!=-1){ if(!Hash[col[rt]]){ num++;
Hash[col[rt]]=1;
}
return ;
}
if(L==R)
return ;
query(lson);
query(rson);
}
void debug(){ for(int i=1;i<32;i++){ printf("%d %d\n",i,col[i]);
}
}
int main(){ int t;
scanf("%d",&t);
while(t--){ int n,nn=0,m;
scanf("%d",&n);
for(int i=0;i<n;i++){ scanf("%d%d",&lm[i],&rm[i]);
A[nn++]=lm[i];
A[nn++]=rm[i];
}
sort(A,A+nn);
m=1;
for(int i=0;i<nn-1;i++){ //去重 if(A[i]!=A[i+1]){ A[m++]=A[i+1];
}
}
for(int i=m-1;i>0;i--){ //添加分隔点 if(A[i]!=A[i-1]+1){ A[m++]=A[i-1]+1;
}
}
sort(A,A+m);
int tml,tmr;
memset(col,-1,sizeof(col));
for(int i=0;i<n;i++){ tml= discretization(0,m-1,lm[i]); //离散化
tmr= discretization(0,m-1,rm[i]); //离散化
update(1,0,m-1,tml,tmr,i);
}
// debug();
memset(Hash,0,sizeof(Hash));
num=0;
query(1,0,m-1);
printf("%d\n",num);
}
return 0;
}

  

POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】的更多相关文章

  1. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  2. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  3. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  4. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  5. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  6. POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 ...

  7. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  8. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  9. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

  10. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

随机推荐

  1. python 中如何判断list中是否包含某个元素

    在python中可以通过in和not in关键字来判读一个list中是否包含一个元素 theList = ['a','b','c'] if 'a' in theList: print 'a in th ...

  2. 解决双击dwg文件ARX自定义实体提示代理的问题

    双击dwg文件的时候,如果没有通过注册表设置会提示代理实体. 注册表自动加载arx 注册表参考路径 R18.1 是cad版本 ACAD-9001:409 是cad的地区语言,409是英文 ,804是中 ...

  3. [原创]ObjectARX开发环境搭建之VS2010+ObjectARX2012Wizard+Addin工具条问题修复

    目前ObjectARX版本越来越高,也越来越简化开发,如果需要同时开发低版本和高版本的ARX程序,就需要搭建批量编译环境,以满足ARX开发的需要. 批量编译的搭建网络上已经有了很多的教程,基本上都是基 ...

  4. Tomcat8.5安装教程

    如果第一次安装的用户请耐心阅读哈安装方法1.下载完成后开始安装,第一次安装的用户建议直接点击“next”不选择插件2.可以自行设置账户名以及密码3.非常重要的一步!!!!!!!!!设置jdk安装目录, ...

  5. 【离散数学】SDUT OJ 指定长度路径数

    指定长度路径数 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Problem Description 题目给出一个有n个节点 ...

  6. bdd相关整理介绍

    BDD介绍 什么是BDD Behavior-driven development In software engineering, behavior-driven development (BDD) ...

  7. rpm命令-以jenkins为例

    1.列出所有安装的Jenkins rpm -qa | grep jenkins 2.软件是否安装:例如:jenkins是否安装 rpm -qa | grep jenkins 3.rpm -ql 列出软 ...

  8. C++中define与const的区别

    C++中不但可以用define定义常量还可以用const定义常量,它们的区别如下: 用#define MAX 255定义的常量是没有类型的,所给出的是一个立即数,编译器只是把所定义的常量值与所定义的常 ...

  9. 锐速破解版linux一键自动安装包

    锐速破解版linux一键自动安装包(5月28日更新) 锐速破解版安装方法: wget -N --no-check-certificate https://github.com/91yun/server ...

  10. SLAM入门必收藏的资料

    搜集了各大网络,请教了SLAM大神,终于把SLAM的入门资料搜集全了!在分享资料前,我们先来看看,SLAM技术入门前需要具备哪些知识?首先学习SLAM需要会C和C++,网上很多代码还用了11标准的C+ ...