POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接:
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 16244 | Accepted: 5656 |
Description
Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations.
Input
of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Source
题意:
兑换货币有一定的兑换率 r 和佣金 c
如果货币 A 兑换 B 兑换率是 r ,佣金是 c
那么value 个 A 可以换成 (value-c)*r 个 B
每个兑换点能两种货币双向兑换,但是兑换比例和佣金不同
输入时注意一下
问:最后如果能够使得自己的钱变多,则输出 YES
否则输出 NO
算法:bellman_ford 判断是否有正环
思路:
看是否有正环,如果有正环,则说明可以通过这个正环
使得自己的钱不断增多。
code:
1860 | Accepted | 140K | 32MS | C++ | 2217B |
/***********************************************************
A Accepted 140 KB 0 ms C++ 1454 B
题意:一个城市有 N 种货币, 有 M 个兑换点
兑换货币有一定的兑换率 r 和佣金 c
如果货币 A 兑换 B 兑换率是 r ,佣金是 c
那么value 个 A 可以换成 (value-c)*r 个 B
每个兑换点能两种货币双向兑换,但是兑换比例和佣金不同
输入时注意一下
问:最后如果能够使得自己的钱变多,则输出 YES
否则输出 NO
算法:bellman_ford 判断是否有正环
思路:直接按照输入顺序加双向边后,套用 bellman_ford模板
看是否有正环,如果有正环,则说明可以通过这个正环
使得自己的钱不断增多。
***********************************************************/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 110;
double d[maxn];
int n, m, index; //index 表示开始拥有的货币的编号
double money; struct Edge{
int u,v;
double r,c; //r:兑换率; c:佣金; 如果拿value个u换v ,则得到的 v :(value-c)*r
}edge[maxn*2]; bool bellman_ford()
{
for(int i = 0; i <= n; i++) d[i] = 0; //初始没有其他货币
d[index] = money; //开始拥有的货币 for(int i = 1; i < n; i++) //n-1 轮松弛操作
{
bool flag = true; //标记是否松弛
for(int j = 0; j < m; j++)
{
int u = edge[j].u;
int v = edge[j].v;
double r = edge[j].r;
double c = edge[j].c; if(d[v] < (d[u]-c)*r) //松弛【也就是走这条路,钱变多】
{
d[v] = (d[u]-c)*r;
flag = false;
}
} if(flag) return false; //当前都无法松弛了,肯定没有正环了,直接返回
} for(int i = 0; i < m; i++) //判断是否能继续松弛,如果能,就说明有正环
{
if(d[edge[i].v] < (d[edge[i].u] - edge[i].c)*edge[i].r)
return true;
}
return false;
} int main()
{
while(scanf("%d%d%d%lf", &n,&m,&index,&money) != EOF)
{
int k = 0;
int u,v;
double r1,c1,r2,c2;
for(int i = 1; i <= m; i++) //双向兑换
{
scanf("%d%d%lf%lf%lf%lf", &u,&v,&r1,&c1,&r2,&c2);
edge[k].u = u;
edge[k].v = v;
edge[k].r = r1;
edge[k++].c = c1; edge[k].u = v;
edge[k].v = u;
edge[k].r = r2;
edge[k++].c = c2;
}
m = 2*m;
if(bellman_ford()) printf("YES\n"); //如果有正环
else printf("NO\n"); }
}
POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】的更多相关文章
- poj1860 Currency Exchange(spfa判断是否存在正环)
题意:有m个货币交换点,每个点只能有两种货币的互相交换,且要给佣金,给定一开始的货币类型和货币数量,问若干次交换后能否让钱增加. 思路:spfa求最长路,判断是否存在正环,如果存在则钱可以在环中一直增 ...
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange(最短路&spfa正权回路)题解
题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange【bellman-Ford模板题】
传送门:http://poj.org/problem?id=1860 题意:给出每两种货币之间交换的手续费和汇率,求出从当前货币s开始交换回到s,能否使本金增多. 思路:bellman-Ford模板题 ...
- POJ 1860 Currency Exchange(Bellman-Ford)
https://vjudge.net/problem/POJ-1860 题意: 有多种货币,可以交换,有汇率并且需要支付手续费,判断是否能通过不断交换使本金变多. 思路: Bellman-Ford算法 ...
随机推荐
- HDU4499 Cannon DFS 回溯的应用
题意就是给你一个n*m的棋盘,然后上面已经有了 棋子.并给出这些棋子的坐标,可是这些棋子是死的就是不能动,然后让你在棋盘上面摆炮.可是炮之间不能互相吃.吃的规则我们斗懂得 炮隔山打嘛.问你最多能放几个 ...
- POJ 3071 Football 【概率DP】
Football Football Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3734 Accepted: 1908 ...
- WP8数据存储--独立存储设置
<Grid x:Name="LayoutRoot" Background="Transparent"> <Grid.RowDefinition ...
- SDUTOJ 2712 5-2 派生类的构造函数
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvUl9NaXNheWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- 不同的Linux之间copy文件常用方法
第一种就是ftp,也就是其中一台Linux安装ftp Server,另外一台使用ftp的client程序来进行文件的copy. 第二种方法就是采用samba服务,类似Windows文件copy 的方式 ...
- python 中property函数如何实现
实际上,在python中property(fget,fset,fdel,doc)函数不是一个真正的函数,他其实是拥有很多特殊方法的类. 这特殊类总的很多方法完成了property函数中的所有工作,涉及 ...
- js基础系列框架:JS重要知识点(转载)
这里列出了一些JS重要知识点(不全面,但自己感觉很重要).彻底理解并掌握这些知识点,对于每个想要深入学习JS的朋友应该都是必须的. 讲解还是以示例代码搭配注释的形式,这里做个小目录: JS代码预解析原 ...
- css中div标签不置顶
设置div属性垂直对齐方式为:top <div style="vertical-align: top;"></div>
- DataUml Design 教程7 - 数据库生成模型
DataUml Design支持数据库生成模型,并支持外键关系,能够根据外键自动生成类与类之间的关系. 目前DataUML Design支持MS Server.MY SQL.Oracle和Access ...
- Android.mk解析
https://developer.android.com/ndk/guides/android_mk.html#over LOCAL_STATIC_LIBRARIES PREBUILT_STATIC ...