基于python的数学建模---传染病六个模型
六个模型的区别
SI-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSI,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SEIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SEIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
潜伏期的高峰都会在传染期高峰的前面
基于python的数学建模---传染病六个模型的更多相关文章
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- 舆论的力量---数学建模初探(SI模型)
在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多.因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存 ...
- 基于python yield机制的异步操作同步化编程模型
又一个milestone即将结束,有了些许的时间总结研发过程中的点滴心得,今天总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性. 游戏引擎一般都采用分布式框架 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Python小白的数学建模课-15.图论基本概念
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...
随机推荐
- LSB隐写术
此为北京理工大学某专业某学期某课程的某次作业 一.项目背景 1.隐写术 隐写术是一门关于信息隐藏的技巧与科学,所谓信息隐藏指的是不让除预期的接收者之外的任何人知晓信息的传递事件或者信息的内容. 2.L ...
- 中秋快乐!新鲜出炉一篇DjangoAdmin使用合集,DjangoAdmin的功能比你想象的强大!
DjangoAdmin DjangoAdmin本身就是一套大而全的系统,官方文档中介绍了很多配置方法,但仍然有大量的骚操作是文档中没有的,所以遇到特殊需求的时候,求助文档不一定有用. 在我看来 Dja ...
- WSUS下载速度和BITS服务
近日,新装了一台WSUS服务器.选择好需要同步的补丁类型和语言版本后开始等待同步.通过过程异常缓慢,速度一直上不去.同步了一整天才30G,同步3T数据需要100天.这样肯定没办法用,所以要想办法提高下 ...
- 《Win10——如何进入高级启动选项》
Win10--如何进入高级启动选项 第一种方法: 管理员命令提示符输入如下代码,自动重启并进入高级启动选项. shutdown /r /o /f /t 00 第二种方法: 1. 管 ...
- 使用Docker方式部署Gitlab,Gitlab-Runner并使用Gitlab提供的CI/CD功能自动化构建SpringBoot项目
1.Docker安装Gitlab,地址:https://www.cnblogs.com/sanduzxcvbnm/p/13814730.html 2.Docker安装Gitlab-runner,地址: ...
- 4.云原生之Docker容器数据持久化介绍与实践
转载自:https://www.bilibili.com/read/cv15182308/?from=readlist #### 创建一个web容器并创建一个数据卷挂载到容器的/webapp目录下(默 ...
- Kibana管理
这里是用来管理您的 kibana 运行时配置的地方,包括初始化配置和后续的索引模式配置.高级设置等.您可以调整 kibana 自身的行为,也可以编辑您通过 kibana 保存的查询.视图.仪表板等各种 ...
- MyCLI :一个支持自动补全和语法高亮的 MySQL/MariaDB 客户端
MyCLI 是一个易于使用的命令行客户端,可用于受欢迎的数据库管理系统 MySQL.MariaDB 和 Percona,支持自动补全和语法高亮.它是使用 prompt_toolkit 库写的,需要 P ...
- Python-函数-字符串函数
函数 1.字符串函数 #(1)add() 对两个数组的元素进行字符串连接 import numpy as np print(np.char.add(["xiaodu"],[&quo ...
- 驱动开发:内核枚举PspCidTable句柄表
在上一篇文章<驱动开发:内核枚举DpcTimer定时器>中我们通过枚举特征码的方式找到了DPC定时器基址并输出了内核中存在的定时器列表,本章将学习如何通过特征码定位的方式寻找Windows ...