基于python的数学建模---传染病六个模型
六个模型的区别
SI-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSI,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

SIS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

SIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

SIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

SEIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

SEIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

潜伏期的高峰都会在传染期高峰的前面
基于python的数学建模---传染病六个模型的更多相关文章
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- 舆论的力量---数学建模初探(SI模型)
在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多.因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存 ...
- 基于python yield机制的异步操作同步化编程模型
又一个milestone即将结束,有了些许的时间总结研发过程中的点滴心得,今天总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性. 游戏引擎一般都采用分布式框架 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Python小白的数学建模课-15.图论基本概念
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...
随机推荐
- Linux常用基础命令三
一.ln 软链接 软链接也称为符号链接,类似于 windows 里的快捷方式,有自己的数据块,主要存放 了链接其他文件的路径. 在查看文件目录中,软连接是以'l'开头 创建软链接 ln -s [原文件 ...
- alter role 导致的数据库无法登录问题
ALTER ROLE 用于更改一个数据库角色.只要改角色后续开始一个新会话,指定的值将会成为该会话的默认值,并且会覆盖 kingbase.conf中存在的值或者从命令行收到的值. 显性的更改角色的一 ...
- git 密码修改
当由于修改了Git 的密码导致 pull 等操作报错时,比如报以下错误: fatal: Authentication failed for 'http://xxxxxxxxxxxxxxxxxx.git ...
- Windows LDAP加固之LDAP over SSL和通道绑定
很多网络通信都可以用SSL来加密的,LDAP也不列外,同样可以用SSL加密. LDAPS使用的证书必须满足以下几个条件: 1.证书的增强性密钥用法中必须有服务器身份验证Server Authentic ...
- Windows 10无法显示无线网络连接
最近刚刚升级了一下操作系统,升级到了1903版本.正好又有一个HP的打印机安装了一下.结果,发现居然无法管理无线网络了.如果看不到图,请点我. 右击选择连接,也无法显示SSID. 驱动是从这个官网下载 ...
- 输入法词库解析(六)QQ 拼音分类词库.qpyd
详细代码:https://github.com/cxcn/dtool 前言 .qpyd 是 QQ 拼音输入法 6.0 以下版本所用的词库格式,可以在 http://cdict.qq.pinyin.cn ...
- 输入法词库解析(五)极点码表.mb
详细代码:https://github.com/cxcn/dtool 前言 mb 是极点五笔的码表格式. 解析 偏移量 描述 0x00 版本信息 0x1B 码表介绍 0x11F 所用到的按键数 0x1 ...
- 发布日志- kratos v2.1.4 发布!
v2.1.4 release https://github.com/go-kratos/kratos/releases/tag/v2.1.4 New Features feat(registry/co ...
- Logstash:为 Logstash 日志启动索引生命周期管理
文章转载自:https://elasticstack.blog.csdn.net/article/details/110816948
- PostgreSQL 删除表格
PostgreSQL 使用 DROP TABLE 语句来删除表格,包含表格数据.规则.触发器等,所以删除表格要慎重,删除后所有信息就消失了. 语法 DROP TABLE 语法格式如下: DROP TA ...
