六个模型的区别

  • SI-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSI,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

  • SIS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

  • SIR-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

  • SIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

  • SEIR-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

  • SEIRS-Model

import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()

潜伏期的高峰都会在传染期高峰的前面

基于python的数学建模---传染病六个模型的更多相关文章

  1. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  2. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  3. 舆论的力量---数学建模初探(SI模型)

    在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多.因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存 ...

  4. 基于python yield机制的异步操作同步化编程模型

    又一个milestone即将结束,有了些许的时间总结研发过程中的点滴心得,今天总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性. 游戏引擎一般都采用分布式框架 ...

  5. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  6. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  7. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  8. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  9. Python小白的数学建模课-16.最短路径算法

    最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...

  10. Python小白的数学建模课-15.图论基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

随机推荐

  1. 使用 Mypy 检查 30 万行 Python 代码,总结出 3 大痛点与 6 个技巧!

    作者:Charlie Marsh 译者:豌豆花下猫@Python猫 英文:Using Mypy in production at Spring (https://notes.crmarsh.com/u ...

  2. LIKE与等式查询比较

    我们知道 char 是定长类型的数据,如果数据长度小于定义的长度,会在字符串尾部加上空格.而对于空格的处理,对于等式匹配,或length等,会忽略空格.而对于like 或模式匹配,空格不能忽略. 一. ...

  3. LibTorch | 使用神经网络求解一维稳态对流扩散方程

    0. 写在前面 本文将使用基于LibTorch(PyTorch C++接口)的神经网络求解器,对一维稳态对流扩散方程进行求解.研究问题参考自教科书\(^{[1]}\)示例 8.3. 目录 0. 写在前 ...

  4. 0.web理解

    web前后端 网站的前端:通过用户肉眼看到的网站的布局内容,对网站的操作的功能,可以让用户可以直接接触与操作的部分. 用户通过访问前端的功能,前端分为 静态功能+动态功能 静态功能:静态功能则不会和后 ...

  5. Skype for Business server 数据库安装

    之前安装了SFB 2015标准版,但是没有安装归档据库,现在打算重新安装.环境中安装的是默认自带的SQL EXPRESS. 继续安装向导,安装SQL数据库.但是在最后的时候遇到了问题. 安装向导报错 ...

  6. Python数据科学手册-Pandas:向量化字符串操作、时间序列

    向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() ...

  7. Traefik 2.0 暴露 Redis(TCP) 服务

    文章转载自:https://mp.weixin.qq.com/s?__biz=MzU4MjQ0MTU4Ng==&mid=2247484452&idx=1&sn=0a17b907 ...

  8. MySQL手动恢复数据库测试操作

    事件背景 MySQL数据库每日零点自动全备 某天上午9点,二狗子不小心drop了一个数据库 我们需要通过全备的数据文件,以及增量的binlog文件进行数据恢复 主要思想与原理 利用全备的sql文件中记 ...

  9. vue 自定义千位符过滤器

    在main.js页面全局引入 Vue.filter('formatNum', function(value) { if(!value) return '' let num = value.toStri ...

  10. PHP全栈开发(四): HTML 学习(1.基础标签+表格标签)

    简单的学习一下HTML 学习HTML采用在www.runoob.com上学习的方法. 而且该网站还提供在线编辑器. 然后HTML编辑器使用Notepad++ 记得上Emmet的官网http://emm ...