\(if \ a - b <= c, AddEdge(b, a, c)\)

Be careful, MLE is not good.

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b)) #define ON_DEBUGG #ifdef ON_DEBUGG #define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin) #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io; const int N = 20007; struct Edge{
int nxt, pre, w;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v, int w){
e[++cntEdge] = (Edge){ head[u], v, w}, head[u] = cntEdge;
} int vis[N], dis[N];
inline bool SPFA(int u){
vis[u] = true;
for(register int i = head[u]; i; i = e[i].nxt){
if(dis[e[i].pre] > dis[u] + e[i].w){
dis[e[i].pre] = dis[u] + e[i].w;
if(vis[e[i].pre] || SPFA(e[i].pre)){
return true;
}
}
}
vis[u] = false;
return false;
} int main(){
//FileOpen();
int n, m;
io >> n >> m; R(i,1,m){
int opt;
io >> opt;
if(opt == 1){
int x, y, w;
io >> x >> y >> w;
add(x, y, -w);
}
else if(opt == 2){
int x, y, w;
io >> x >> y >> w;
add(y, x, w);
}
else if(opt == 3){
int x, y;
io >> x >> y;
add(x, y, 0);
add(y, x, 0);
}
} R(i,1,n){
add(0, i, 0); // this sentence caused MLE !
dis[i] = 0x3f3f3f3f;
} if(SPFA(0) == false){
printf("Yes\n");
}
else{
printf("No\n");
}
return 0;
}

Luogu1993 小K的农场 (差分约束)的更多相关文章

  1. P1993 小K的农场 && 差分约束

    首先第一篇讨论的是差分约束系统解的存在 差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统 差分约束解的求解可以转化 ...

  2. 【BZOJ3436】小K的农场 差分约束

    [BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...

  3. 小K的农场 差分约束

    题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...

  4. BZOJ 3436: 小K的农场 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c  ->  b<=a-c ...

  5. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  6. luogu1993 小K的农场

    题目大意 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...

  7. P1993 小K的农场 差分约束系统

    这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...

  8. 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...

  9. 【BZOJ3436】小K的农场(差分约束)

    [BZOJ3436]小K的农场(差分约束) 题面 由于BZOJ巨慢无比,使用洛谷美滋滋 题解 傻逼差分约束题, 您要是不知道什么是差分约束 您就可以按下\(Ctrl+W\)了 #include< ...

随机推荐

  1. 每天一个 HTTP 状态码 202

    202 Accepted 202 Accepted 表示服务器已经接受了这个请求,但是还不确定这个请求是否能够成功地被处理完.该请求最终可能会或可能不会被执行,并且在处理发生时可能会被拒绝,这是不确定 ...

  2. 微信小程序避坑指南——echarts层级太高/层级遮挡

    问题:小程序中echarts因为小程序原生的canvas层级太高,而导致弹窗这类dom元素无法遮挡住canvas,如下图: 解决方案1:(wx:if控制dom显隐,显示canvas就重新渲染echar ...

  3. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme-2013:解读

    本文记录阅读此论文的笔记 摘要 (1)1996年,HPS三人提出一个格上的高效加密方案,叫做NTRUEncrypt,但是没有安全性证明:之后2011年,SS等人修改此方案,将其安全规约到标准格上的困难 ...

  4. 开发工具-SSMS官方下载地址

    更新记录 2022年6月10日 完善标题. SQL Server Management Studio官方下载地址 https://docs.microsoft.com/en-us/sql/ssms/d ...

  5. 29.MySQL高级SQL语句

    MySQL高级SQL语句 目录 MySQL高级SQL语句 创建两个表 SELECT DISTINCT WHERE AND OR IN BETWEEN 通配符 LIKE ORDER BY 函数 数学函数 ...

  6. 第六章、PXE高效网络装机、Kickstart无人值守安装

    目录 一.部署PXE远程安装服务 1PXE定义 2PXE服务优点 3搭建网络体系前提条件 4PXE实现过程讲解 二.搭建PXE远程安装服务器 三.Kickstart无人值守安装 一.部署PXE远程安装 ...

  7. 循序渐进 Redis 分布式锁(以及何时不用它)

    场景 假设我们有个批处理服务,实现逻辑大致是这样的: 用户在管理后台向批处理服务投递任务: 批处理服务将该任务写入数据库,立即返回: 批处理服务有启动单独线程定时从数据库获取一批未处理(或处理失败)的 ...

  8. JavaScript中async和await的使用以及队列问题

    宏任务和微任务的队列入门知识,可以参考之前的文章: JavaScript的事件循环机制 宏任务和微任务在前端面试中,被经常提及到,包括口头和笔试题 async && await概念 a ...

  9. UiPath文本操作Get Visible Text的介绍和使用

    一.]Get Visible Text(获取可见文本)操作的介绍 从指示的UI元素中提取字符串及其信息.执行屏幕抓取操作时,还可以自动生成此活动以及容器. 二.Get Visible Text在UiP ...

  10. 无语——真的好用到不行的7个Python小技巧

    本文总结了我几个我在学习python过程中,用到的几个超好用的操作,这里分享给大家,我相信你们也会非常喜欢,目录如下.这里提前索要再看,记得点一点再看哦.这只是其中一些技巧,以后会慢慢和大家分享. 1 ...