134. 加油站

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gas 和 cost ,如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:

  • gas.length == n
  • cost.length == n
  • 1 <= n <= 105
  • 0 <= gas[i], cost[i] <= 104
暴力超时
public int canCompleteCircuit(int[] gas, int[] cost) {
var len = gas.length;
var diff = new int[len];
var sum = 0;
for (var i = 0; i < len; i++) {
diff[i] = gas[i] - cost[i];
sum += diff[i];
}
if (sum < 0) {
return -1;
}
for (var i = 0; i < len; i++) {
if (diff[i] < 0) {
continue;
}
var j = (i + 1) % len;
var count = diff[i];
while (j != i) {
count += diff[j];
j = (j + 1) % len;
if (count < 0) {
break;
}
}
if (j == i) {
return i;
}
}
return -1;
}
贪心算法解法一:
    public int canCompleteCircuit(int[] gas, int[] cost) {
var len = gas.length;
var sum = 0;
var min = Integer.MAX_VALUE;
for (var i = 0; i < len; i++) {
sum += gas[i] - cost[i];
min = Math.min(min, sum);
}
//System.out.print(min);
if (sum < 0) {
return -1;
}
if(min >= 0) {
return 0;
}
for(var i = len - 1; i >= 0; i--) {
min += gas[i] - cost[i];
if(min >= 0) {
return i;
}
}
return -1;
}
  • 首先,从0开始迭代,找出每日剩余(gas[i] - cost[i])的最小值min和sum
  • 如果sum<0则无论从哪个加油站开始都无法遍历全部
  • 如果最小值min>=0则证明从0号站出发没有出现断油,返回0
  • 否则则最小值为负数,从后往前查找并累加每日消耗能够填平这个负数的值,返回这个值的下标

为什么是往前查找min记录的是从0开始到某一下标(假设为i)的消耗总和的最小值,所以想要找能够填平这个负数的下标,需要从0的前面,也就是len-1的位置开始,不断向前累加,直到出现大于等于零的下标。

min区间后是不会出现负数的,因为如果后面出现负数的话,min就会得到更新从而变得更小

贪心算法解法二:
public int canCompleteCircuit(int[] gas, int[] cost) {
var len = gas.length;
var curSum = 0;
var totalSum = 0;
var ans = 0;
for (var i = 0; i < len; i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if(curSum < 0) {
ans = i + 1;
curSum = 0;
}
} //System.out.print(min);
if (totalSum < 0) {
return -1;
} return ans;
}

算法核心思想:

​ 如果当前从0到i的累加和curSum小于零,则说明从0到i的下标均不能作为开始加油站下标,那么就让i+1尝试作为初始下标,并重置curSum为0.验证贪心算法的正确性最好的就是列举一些反例:

  • i+1后会不会出现更大的负数?和前面一样,如果出现再使curSum小于0的话,就会又更新为i+1了

  • 如果[0, i]区间选某一个中间点作为起点到i,累加到curSum是不小于零呢?

    不会的,如下图:按照上面的假设,总体curSum<0即 区间和1 + 区间和2 < 0,而区间和2>0,那么区间和1 < 0,这是不可能的,如果区间和1小于零,意味着早就该更新curSum为0了

【贪心算法】NO134 加油站的更多相关文章

  1. 题目1437:To Fill or Not to Fill:贪心算法解决加油站选择问题(未解决)

    //贪心算法解决加油站选择问题 //# include<iostream> # include<stdio.h> using namespace std; # include& ...

  2. 1033. To Fill or Not to Fill (25) -贪心算法

    题目如下: With highways available, driving a car from Hangzhou to any other city is easy. But since the ...

  3. 『嗨威说』算法设计与分析 - 贪心算法思想小结(HDU 2088 Box of Bricks)

    本文索引目录: 一.贪心算法的基本思想以及个人理解 二.汽车加油问题的贪心选择性质 三.一道贪心算法题点拨升华贪心思想 四.结对编程情况 一.贪心算法的基本思想以及个人理解: 1.1 基本概念: 首先 ...

  4. C#LeetCode刷题-贪心算法

    贪心算法篇 # 题名 刷题 通过率 难度 44 通配符匹配   17.8% 困难 45 跳跃游戏 II   25.5% 困难 55 跳跃游戏   30.6% 中等 122 买卖股票的最佳时机 II C ...

  5. 贪心算法(Greedy Algorithm)

    参考: 五大常用算法之三:贪心算法 算法系列:贪心算法 贪心算法详解 从零开始学贪心算法 一.基本概念: 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以 ...

  6. 算法导论----贪心算法,删除k个数,使剩下的数字最小

    先贴问题: 1个n位正整数a,删去其中的k位,得到一个新的正整数b,设计一个贪心算法,对给定的a和k得到最小的b: 一.我的想法:先看例子:a=5476579228:去掉4位,则位数n=10,k=4, ...

  7. LEETCODE —— Best Time to Buy and Sell Stock II [贪心算法]

    Best Time to Buy and Sell Stock II Say you have an array for which the ith element is the price of a ...

  8. ACM_ICPC hdu-2111(简单贪心算法)

    一道非常简单的贪心算法,但是要注意输入的价值是单位体积的价值,并不是这个物品的总价值!#include <iostream> #include <stdio.h> #inclu ...

  9. 基于贪心算法的几类区间覆盖问题 nyoj 12喷水装置(二) nyoj 14会场安排问题

    1)区间完全覆盖问题 问题描述:给定一个长度为m的区间,再给出n条线段的起点和终点(注意这里是闭区间),求最少使用多少条线段可以将整个区间完全覆盖 样例: 区间长度8,可选的覆盖线段[2,6],[1, ...

  10. 增强学习贪心算法与Softmax算法

    (一) 这个算法是基于一个概率来对探索和利用进行折中:每次尝试时,以概率进行探索,即以均匀概率随机选取一个摇臂,以的概率进行利用,即以这个概率选择当前平均奖赏最高的摇臂(如有多个,则随机选取). 其中 ...

随机推荐

  1. Shell写脚本关于ssh执行jar包,需要刷新JDK路径的问题

    比如脚本中下面这一段 ssh $i "java -jar /applog/$PROJECT/$APPNAME --server.port=$SERVER_PORT >/dev/null ...

  2. python-文件和文件夹操作

    1.os模块 import os 方法 功能说明 access(path,mode) 测试是否可以按照mode指定的权限访问文件 chdir(path) 把path设为当前工作目录 chmod(pat ...

  3. 如何找到并使用makecert.exe

    如果安装visual studio 后,visual studio command  仍然无法识别 makecert.exe 命令. 则需要手动安装 Windows Software Developm ...

  4. Java mysql查询数据库重复数据(单个或多个字段)

    查询表重复数据: SELECT * FROM 表1 f WHERE (f.字段1,f.字段2) in (SELECT 字段1,字段2 FROM 表1 GROUP BY 字段1,字段2 HAVING c ...

  5. PRVF-4007 : User equivalence check failed for user "grid"

    PRVF-4007 : User equivalence check failed for user "grid" 问题:Oracle安装Grid Infrastructure之前 ...

  6. Crypto入门 (九) easy_RSA

    前言: 建议看这篇随笔之前先看入门(8)数论基础,简单学习下,有利于你看懂后面得算法原理,链接给出:https://www.cnblogs.com/yuanchu/p/13494104.html ea ...

  7. restfull风格传参

  8. 常见Dos命令学习

    Dos命令行 打开CMD方法 开始+系统+命令提示符(方便以管理员身份运行) Win+R 输入cmd 打开控制台(最常用) 在任意文件夹下,按住Shift键+鼠标右键点击,选择"在此处打开P ...

  9. selenium---xpath定位方法详解

    Xpath定位   验证xpath写的是否正确: 1.打开浏览器检查页面,Ctrl+F,把路径输入进去,如果可以定位到的位置只有一个,说明是对的 2.在需要定位的页面,按F12后,切换至console ...

  10. userdel: user zhangsan is currently used by process 1057

    我个人推测是在root用户下su 切换到xiaoming用户,然后在xiaoming用户下又切换回root,但是xiaoming用户还被某个进程占用着,所以进程不死,用户del不掉. 所以我们在命令行 ...