#(1)amax(),amin() 作用:计算数组中的元素沿指定轴的最大值,最小值
import numpy as np
x = np.random.randint(1,11,9).reshape((3,3))
print(x)
#output:
[[ 9 1 2]
[ 5 2 6]
[10 10 3]]
print(np.amin(x,0))
#每一列的最小值
print(np.amin(x,1))
#每一行的最小值
print(np.amax(x,0))
#每一列的最大值
print(np.amax(x,1))
#每一行的最大值
#output:
[5 1 2]
[1 2 3]
[10 10 6]
[ 9 6 10]
#(2)ptp() 作用:计算数组中元素最大值与最小值的差(最大值-最小值)
import numpy as np
x = np.random.randint(1,11,9).reshape((3,3))
print(x) print(np.ptp(x)) print(np.ptp(x,0)) print(np.ptp(x,1))
#output:
[[10 6 2]
[ 2 10 10]
[ 6 5 10]]
8
[8 5 8]
[8 8 5]
#(3)percentile() 原型:numpy.percentile(a,p,axis) #a为数组 p为要计算的百分位数,在0~100之间,axis:沿着它计算百分比的轴 作用:百分位数是统计中使用的度量,表示小于这个值的观察值的百分比
x = np.array([[10,7,4],[3,2,1]])
print(x)
print(np.percentile(x,50))
print(np.percentile(x,50,axis=0))
print(np.percentile(x,50,axis=1))
(10+3)/2=6.5
#output:
[[10 7 4]
[ 3 2 1]]
3.5
[6.5 4.5 2.5]
[7. 2.]
#(4)median() 作用:算数组中元素的中位数(中值)
import numpy as np
x = np.array([[30,65,70],[80,95,10],[50,90,60]])
print(x)
print("\n") print(np.median(x))
print(np.median(x,axis=0))
print(np.median(x,axis=1))
#(5)mean() 作用:返回数组中元素的算数平方根
import numpy as np
x = np.arange(1,10).reshape((3,3))
print("x数组:")
print(x)
print("\n") print(np.mean(x))
print(np.mean(x,axis=0))
print(np.mean(x,axis=1))
#output:
x数组:
[[1 2 3]
[4 5 6]
[7 8 9]] 5.0
[4. 5. 6.]
[2. 5. 8.]
#(6)average()作用:根据在另一个数组中给出的各自权重计算数组中的元素的加权平均值,可以接受一个轴参数。如果没有指定轴,则数组会被展开
import numpy as np
x = np.array([1,2,3,4])
print(x)
print(np.average(x))
wts = np.array([4,3,2,1])
print(np.average(x,weights=wts))
#如果return 参数为true,则返回权重的和
print("权重的和:")
print(np.average([1,2,3,4],weights=[4,3,2,1],returned=True)) x = np.array([0,1,2,3,4,5]).reshape((3,2))
print(x)
wts = np.array([3,5])
print(np.average(x,axis=1,weights=wts))
#(0*3+1*5)/(3+5)=5/8=0.625
#output:
[1 2 3 4]
2.5
2.0
权重的和:
(2.0, 10.0)
[[0 1]
[2 3]
[4 5]]
[0.625 2.625 4.625]
#(7)标准差 公式: std = sqrt(mean((x-x.mean())**2))
如果数组是[1,2,3,4],则其平均值为2.5,因此,差的平方是[2.25,0.25,0.25,2.25],并且其平均值的平方根除以4,即sqrt(5/4),结果为1.118033........
x = np.array([1,2,3,4])
print(x)
x - np.mean(x)
1.5*1.5
0.5*0.5
y = np.array([2.25,0.25,0.25,2.25])
np.mean(y)
np.sqrt(1.25)
#也即
import numpy as np
print(np.std([1,2,3,4]))
#output:
[1 2 3 4]
1.118033988749895
#(8)方差. mean((x-x.mean())**2) 标准差是方差的平方根
print(np.var([1,2,3,4]))
#也即
x = np.array([1,2,3,4])
x - np.mean(x)
y = np.array([2.25,0.25,0.25,2.25])
print(y)
np.mean(y)
#output:
1.25
[2.25 0.25 0.25 2.25]
1.25

参考视频:哔哩哔哩——马士兵教育-杨淑娟

python-函数-统计函数的更多相关文章

  1. python 函数之day3

    一 函数的语法及特性 什么是函数? 定义:函数是一个功能通过一组语句的集合,由名字(函数名)将其封装起来的代码块,要想执行这个函数,只要调用其函数名即可. 特性: 减少重复代码 使程序变的可扩展 使程 ...

  2. Python函数作用域的查找顺序

    函数作用域的LEGB顺序 1.什么是LEGB? L:local 函数内部作用域 E:enclosing 函数内部与内嵌函数之间 G:global 全局作用域 B:build-in 内置作用域 2.它们 ...

  3. Python函数讲解

    Python函数

  4. Python函数信息

    Python函数func的信息可以通过func.func_*和func.func_code来获取 一.先看看它们的应用吧: 1.获取原函数名称: 1 >>> def yes():pa ...

  5. Python函数参数默认值的陷阱和原理深究"

    本文将介绍使用mutable对象作为Python函数参数默认值潜在的危害,以及其实现原理和设计目的 本博客已经迁移至: http://cenalulu.github.io/ 本篇博文已经迁移,阅读全文 ...

  6. Python开发【第四章】:Python函数剖析

    一.Python函数剖析 1.函数的调用顺序 #!/usr/bin/env python # -*- coding:utf-8 -*- #-Author-Lian #函数错误的调用方式 def fun ...

  7. Python函数解析

    对于Python的函数,我们需要记住的是: 1. 函数的默认返回值是None. 2. python是一个自上而下逐行解释并执行的语言.因此,函数的定义必须在函数被调用之前.同名的函数,后定义的会覆盖前 ...

  8. Python入门笔记(18):Python函数(1):基础部分

    一.什么是函数.方法.过程 推荐阅读:http://www.cnblogs.com/snandy/archive/2011/08/29/2153871.html 一般程序设计语言包含两种基本的抽象:过 ...

  9. Python函数1

    Python 函数命令的使用 想想我们之前数学中学到的函数,首先我们需要定义一个函数,例如f(x)=x, 当x输入任意数的时候,f(x)都能输出和x相等的数值. 那么在Python中是如何实现的呢? ...

  10. python函数传参是传值还是传引用?

    首先还是应该科普下函数参数传递机制,传值和传引用是什么意思? 函数参数传递机制问题在本质上是调用函数(过程)和被调用函数(过程)在调用发生时进行通信的方法问题.基本的参数传递机制有两种:值传递和引用传 ...

随机推荐

  1. scala WordCount案例

    数据样例: java,spark,hadoop,python,datax java,spark,hadoop,spark,python,datax java,spark,hadoop,python,d ...

  2. MyBatis-Plus联表查询的短板,终于有一款工具补齐了

    原创:微信公众号 码农参上,欢迎分享,转载请保留出处. 哈喽大家好啊,我是Hydra. mybatis-plus作为mybatis的增强工具,它的出现极大的简化了开发中的数据库操作,但是长久以来,它的 ...

  3. 网易云UI模仿-->侧边栏

    侧边栏 效果图 界面分解 可以看到从上到下的流式布局.需要一个Column来容纳,并且在往上滑动的过程中顶部的个人信息是不会动的.所以接下来需要将剩余部分占满使用Flexibel组件. 实现 个人信息 ...

  4. gitlab+jenkins自动构建jar包并发布

    一.背景介绍: 公司软件都是java开发的,一般都会将java代码打包成jar包发布:为了减轻运维部署的工作量,合理偷懒,就需要自动化流程一条龙服务:开发将代码提交到gitlab--->jenk ...

  5. 字符串的操作和MAth工具类

    字符串的操作 常用方法 判断功能方法 equals(String s)判断两个字符串是否相同,区分大小写 equsalsignorecase(String s) 判断两个字符串是否相同,不区分大小写 ...

  6. Java语言的跨平台性

    2.1 Java虚拟机 -- JVM JVM:Java虚拟机,简称JVM,是运行所有java程序的假想计算机,是java程序的运行环境,是java最具吸引力的特性之一,我们编写的java代码都运行在J ...

  7. Modbus转OPC

    在这里给大家介绍一种低成本的将Modbus RTU协议的串口设备接入到OPC UA的服务器呢? OPC全称是OLE(Object Linking and Embedding) for Process ...

  8. Linux 时间设置和同步服务

    修改日期时间的工具 date hwclock timedatectl date工具的使用 作用:显示和设置系统时间 选项: -d <字符串> 显示字符串所指的日期与时间,比如:" ...

  9. JVM内存模型和结构详解(五大模型图解)

    JVM内存模型和Java内存模型都是面试的热点问题,名字看感觉都差不多,实际上他们之间差别还是挺大的. 通俗点说,JVM内存结构是与JVM的内部存储结构相关,而Java内存模型是与多线程编程相关@mi ...

  10. what the difference betweent pin page and lock page ?

    以前在项目中,大家为了避免自己使用的page被换出,使用的方式是mlock,从mlock的实现的看,它限制了page被swap, 然后在一个swap off的系统中,这样其实和mlock调用与否没有关 ...