欢迎关注个人公众号:爱喝可可牛奶

LeetCode算法训练-动态规划

理论知识

动态规划当前状态是由前一个状态推导出来的,而贪心没有状态的转移

动态规划需要借助dp数组,可能是一维也可能是二维的

  1. 首先要明确dp数组是用来干什么的,下标对应什么
  2. 状态如何转移 ? 也就是理清递推公式
  3. dp数组如何初始化
  4. 如何遍历
  5. 举个栗子模拟推导一遍

LeetCode 509. 斐波那契数

分析

F(n) = F(n - 1) + F(n - 2),其中 n > 1

代码

class Solution {
public int fib(int n) {
if (n <= 1) return n;
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int index = 2; index <= n; index++){
dp[index] = dp[index - 1] + dp[index - 2];
}
return dp[n];
}
}

LeetCode 70. 爬楼梯

分析

错误 没有理清递推函数

class Solution {
public int climbStairs(int n) {
int[] dp = new int[n+1];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
dp[i] = dp[i-1] + dp[i-2]+2;
}
return dp[n];
}
}

dp[i]表示到当前楼梯有多少种跳法,从这里可以往后跳一步或者两步,这样就建立了前后阶梯的关系,但是不能跳2个一步

当前阶梯跳数能由前一个阶梯跳一步或前两个阶梯跳两步得到

代码

class Solution {
public int climbStairs(int n) {
if(n == 1){
return 1;
}
int[] dp = new int[n+1];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}

LeetCode 746. 使用最小花费爬楼梯

整数数组 cost ,cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

分析

根据测试用例能够得出台阶顶部在哪里,cost[i] :从下标i-1爬一步,从i-2爬两步到台阶顶部

dp[i]表示爬到第i个台阶的最小花费,

状态转移:dp[i] = Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])

代码

class Solution {
public int minCostClimbingStairs(int[] cost) {
int len = cost.length;
int[] dp = new int[len+1];
// 初始化
dp[0] = 0;
dp[1] = 0;
for(int i = 2; i <= len; i++){
dp[i] = Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
}
return dp[len];
}
}

总结

  1. 搞清楚dp数组含义以及对应下标反映了什么状态
  2. 弄清楚转移公式
  3. 初始化
  4. 确定遍历顺序(这个和转移公式紧密相关)
  5. 模拟一下

LeetCode算法训练-动态规划的更多相关文章

  1. Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...

  2. LeetCode算法题-House Robber(Java实现)

    这是悦乐书的第187次更新,第189篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第46题(顺位题号是198).你是一个专业的强盗,计划在街上抢劫房屋. 每个房子都藏着一 ...

  3. LeetCode算法题-Remove Duplicates from Sorted List

    这是悦乐书的第160次更新,第162篇原创 01 前情回顾 昨晚的爬楼梯算法题,有位朋友提了个思路,使用动态规划算法.介于篇幅问题,这里不细说动态规划算法,以后会在数据机构和算法的理论知识里细说. 昨 ...

  4. 蓝桥杯 算法训练 ALGO-116 最大的算式

    算法训练 最大的算式   时间限制:1.0s   内存限制:256.0MB 问题描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量 ...

  5. LeetCode总结 -- 一维动态规划篇

    这篇文章的主题是动态规划, 主要介绍LeetCode中一维动态规划的题目, 列表如下: Climbing StairsDecode WaysUnique Binary Search TreesMaxi ...

  6. 蓝桥杯 算法训练 ALGO-36 传纸条

    算法训练 传纸条   时间限制:1.0s   内存限制:512.0MB 问题描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而 ...

  7. 蓝桥杯 算法训练 ALGO-21 装箱问题

     算法训练 装箱问题   时间限制:1.0s   内存限制:256.0MB 问题描述 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每 ...

  8. Java实现 蓝桥杯 算法训练 Cowboys

    试题 算法训练 Cowboys 问题描述 一个间不容发的时刻:n个牛仔站立于一个环中,并且每个牛仔都用左轮手枪指着他旁边的人!每个牛仔指着他顺时针或者逆时针方向上的相邻的人.正如很多西部片那样,在这一 ...

  9. 蓝桥杯 算法训练 Torry的困惑(基本型)(水题,筛法求素数)

    算法训练 Torry的困惑(基本型) 时间限制:1.0s   内存限制:512.0MB      问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.Torry突 ...

  10. 蓝桥杯 算法训练 区间k大数查询(水题)

    算法训练 区间k大数查询 时间限制:1.0s   内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. ...

随机推荐

  1. ARC145~152 题解

    比赛标号从大到小排列 . 因为博主比较菜所以没有题解的题都是博主不会做的 /youl ARC144 以前的比赛懒得写了 . 目录 AtCoder Regular Contest 152 B. Pass ...

  2. 数据科学家赚多少?基于pandasql和plotly的薪资分析与可视化 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 AI 岗位&攻略系列:https://www.showmeai. ...

  3. [数学建模]层次分析法AHP

    评价类问题. 问题: ① 评价的目标? ② 可选的方案? ③ 评价的指标? 分层 目标层.准则层.方案层 层次分析法可分为四个步骤建立: 第一步:标度确定和构造判断矩阵: 第二步:特征向量,特征根计算 ...

  4. MySQL主从配置(Django实现主从配置读写分离)

    目录 一 MySQL主从配置原理(主从分离,主从同步) 二 操作步骤 2.1我们准备两台装好mysql的服务器(我在此用docker模拟了两台机器) 2.2 远程连接入主库和从库 远程连接主库 远程连 ...

  5. windows上用vs2017静态编译onnxruntime-gpu CUDA cuDNN TensorRT的坎坷之路

    因为工作业务需求的关系,需编译onnxruntime引入项目中使用,主项目exe是使用的vs2017+qt5.12. onnxruntime就不用介绍是啥了撒,在优化和加速AI机器学习推理和训练这块赫 ...

  6. 前端知识之JS(javascirpt)

    目录 JS简介 JS基础 1.注释语法 2.引入JS的多种方式 3.结束符号 变量与常量 基本数据类型 1.数字类型(Number) 2.字符类型(string) 3.布尔类型(Boolean) 4. ...

  7. python 之匿名函数(lambda)

    什么是匿名函数?匿名函数就是不用def关键字,使用lambda关键字定义的一个函数.匿名函数简约而不简单. 匿名函数的格式: lambda[ paramters1, paramters2 , .... ...

  8. CH32V307 内部10M网络工程创建流程

    说明: 本次操作是基于目前MRSV1.8.0版本,以及WCH官网CH32V307-V1.8版本的例程操作. MRS链接:http://www.mounriver.com/download CH32V3 ...

  9. [数据与分析可视化] D3入门教程3-d3中的数据操作

    d3.js入门教程3-d3.js中的数据操作 文章目录 d3.js入门教程3-d3.js中的数据操作 数学操作 对象和数组 过滤Filtering 排序Sorting 映射group 循环loop 重 ...

  10. 20 张图带你全面了解 HTTPS 协议,再也不怕面试问到了!

    本文详细介绍了 HTTPS 相较于 HTTP 更安全的原因,包括对称加密.非对称加密.完整性摘要.数字证书以及 SSL/TLS 握手等内容,图文并茂.理论与实战结合.建议收藏! 1. 不安全的 HTT ...