Linux实例常用内核网络参数介绍与常见问题处理---重要
文章转载自:https://help.aliyun.com/knowledge_detail/41334.html
本文主要介绍如下几点内容,您可以根据实际需要选择。
查看和修改Linux实例内核参数
在修改内核参数前,需要注意以下几点。
- 从实际需求出发,尽量有相关数据的支撑,不建议随意调整内核参数。
- 了解参数的具体作用,需注意同类型或版本的环境中,内核参数可能有所不同。
- 备份ECS实例中的重要数据。关于如何备份数据请参见创建快照。
本文提供以下两种修改Linux实例内核参数的方法。
方法一:通过/proc/sys/目录查看和修改内核参数
/proc/sys/
目录是Linux内核在启动后生成的伪目录,其目录下的net
文件夹中存放了当前系统中开启的所有内核参数,目录树结构与参数的完整名称相关,如net.ipv4.tcp_tw_recycle
,它对应的文件是/proc/sys/net/ipv4/tcp_tw_recycle
文件,文件的内容就是参数值。方法一修改的参数值仅在当前运行中生效,系统重启后会回滚到历史值,一般用于临时性验证修改的效果。若需要永久性修改,请参考方法二。
查看内核参数:使用cat命令查看对应文件的内容,执行如下命令,查看
net.ipv4.tcp_tw_recycle
的值。
cat /proc/sys/net/ipv4/tcp_tw_recycle
```
修改内核参数:使用
echo
命令修改内核参数对应的文件,执行如下命令,将net.ipv4.tcp_tw_recycle
的值修改为0。
echo "0" > /proc/sys/net/ipv4/tcp_tw_recycle
```
方法二:通过sysctl.conf文件查看和修改内核参数
查看内核参数:执行
sysctl -a
命令,查看当前系统中生效的所有参数,系统显示类似如下。
net.ipv4.tcp_app_win = 31
net.ipv4.tcp_adv_win_scale = 2
net.ipv4.tcp_tw_reuse = 0
net.ipv4.tcp_frto = 2
net.ipv4.tcp_frto_response = 0
net.ipv4.tcp_low_latency = 0
net.ipv4.tcp_no_metrics_save = 0
net.ipv4.tcp_moderate_rcvbuf = 1
net.ipv4.tcp_tso_win_divisor = 3
net.ipv4.tcp_congestion_control = cubic
net.ipv4.tcp_abc = 0
net.ipv4.tcp_mtu_probing = 0
net.ipv4.tcp_base_mss = 512
net.ipv4.tcp_workaround_signed_windows = 0
net.ipv4.tcp_challenge_ack_limit = 1000
net.ipv4.tcp_limit_output_bytes = 262144
net.ipv4.tcp_dma_copybreak = 4096
net.ipv4.tcp_slow_start_after_idle = 1
net.ipv4.cipso_cache_enable = 1
net.ipv4.cipso_cache_bucket_size = 10
net.ipv4.cipso_rbm_optfmt = 0
net.ipv4.cipso_rbm_strictvalid = 1
通过以下两种方式,修改内核参数。
注:调整内核参数后,内核处于不稳定状态,请务必重启实例。
执行如下命令,临时修改内核参数。
/sbin/sysctl -w kernel.parameter="[$Example]"
注:[$Example]为参数值,如
sysctl -w net.ipv4.tcp_tw_recycle="0"
命令,将参数值改为0。通过修改配置文件的方式修改内核参数。
- 执行如下命令,修改
/etc/sysctl.conf
文件中的参数。
vi /etc/sysctl.conf
- 执行如下命令,使配置生效。
/sbin/sysctl -p
- 执行如下命令,修改
Linux网络相关内核参数引发的常见问题及处理
Linux网络相关内核参数引发的常见问题主要包括以下几种。
问题一:Linux实例NAT哈希表满导致ECS实例丢包
提示:此处涉及的内核参数如下。
net.netfilter.nf_conntrack_buckets
net.nf_conntrack_max
问题现象
Linux实例出现间歇性丢包,无法连接实例。请参考ping 丢包或不通时链路测试说明,通过tracert、mtr等工具排查,外部网络未见异常。同时,在系统日志中重复出现大量类似如下错误信息。
Feb 6 16:05:07 i-*** kernel: nf_conntrack: table full, dropping packet.
Feb 6 16:05:07 i-*** kernel: nf_conntrack: table full, dropping packet.
Feb 6 16:05:07 i-*** kernel: nf_conntrack: table full, dropping packet.
Feb 6 16:05:07 i-*** kernel: nf_conntrack: table full, dropping packet.
原因分析
ip_conntrack是Linux系统内NAT的一个跟踪连接条目的模块。ip_conntrack模块会使用一个哈希表记录TCP协议“established connection”记录,当这个哈希表满之后,便会导致“nf_conntrack: table full, dropping packet
”错误。Linux系统会开辟一个空间,用于维护每一个TCP链接,这个空间的大小与nf_conntrack_buckets
、nf_conntrack_max
参数相关,后者的默认值是前者的4倍,所以一般建议调大nf_conntrack_max
参数值。
注:系统维护连接比较消耗内存,请在系统空闲和内存充足的情况下调大
nf_conntrack_max
参数,且根据系统的情况而定。
解决方法
登录Linux实例,如何登录Linux实例请参见使用管理终端连接Linux实例。
执行如下命令,编辑系统内核配置。
vi /etc/sysctl.conf
修改哈希表项最大值参数
net.netfilter.nf_conntrack_max
为655350
。修改超时参数
net.netfilter.nf_conntrack_tcp_timeout_established
为1200
,默认情况下超时时间是432000秒。执行
sysctl -p
命令,使配置生效。
问题二:报“Time wait bucket table overflow”错误
提示:此处涉及的内核参数为
net.ipv4.tcp_max_tw_buckets
。
问题现象
Linux实例的
/var/log/message
日志信息全是类似“
kernel: TCP: time wait bucket table overflow
”的报错信息,提示“
time wait bucket table
”溢出,系统显示类似如下。
Feb 18 12:28:38 i-*** kernel: TCP: time wait bucket table overflowFeb 18 12:28:44 i-*** kernel: printk: 227 messages suppressed.Feb 18 12:28:44 i-*** kernel: TCP: time wait bucket table overflowFeb 18 12:28:52 i-*** kernel: printk: 121 messages suppressed.Feb 18 12:28:52 i-*** kernel: TCP: time wait bucket table overflowFeb 18 12:28:53 i-*** kernel: printk: 351 messages suppressed.Feb 18 12:28:53 i-*** kernel: TCP: time wait bucket table overflowFeb 18 12:28:59 i-*** kernel: printk: 319 messages suppressed.
执行如下命令,统计处于TIME_WAIT状态的TCP连接数,发现处于TIME_WAIT状态的TCP连接非常多。
netstat -ant|grep TIME_WAIT|wc -l
原因分析
参数net.ipv4.tcp_max_tw_buckets
可以调整内核中管理TIME_WAIT状态的数量。当实例中处于TIME_WAIT状态,及需要转换为TIME_WAIT状态的连接数之和超过net.ipv4.tcp_max_tw_buckets
参数值时,message日志中将报“time wait bucket table
” 错误,同时内核关闭超出参数值的部分TCP连接。您需要根据实际情况适当调高net.ipv4.tcp_max_tw_buckets
参数,同时从业务层面去改进TCP连接。
解决方法
执行如下命令,统计TCP连接数。
netstat -anp |grep tcp |wc -l
执行如下命令,查询
net.ipv4.tcp_max_tw_buckets
参数。如果确认连接使用很高,则容易超出限制。
vi /etc/sysctl.conf
根据现场情况,增加
net.ipv4.tcp_max_tw_buckets
参数值的大小。执行
sysctl -p
命令,使配置生效。
问题三:Linux实例中FIN_WAIT2状态的TCP链接过多
提示:此处涉及的内核参数为
net.ipv4.tcp_fin_timeout
。
问题现象
FIN_WAIT2状态的TCP链接过多。
原因分析
- 在HTTP服务中,Server由于某种原因会主动关闭连接,例如KEEPALIVE超时的情况下。作为主动关闭连接的Server就会进入FIN_WAIT2状态。
- 在TCP/IP协议栈中,存在半连接的概念,FIN_WAIT2状态不算超时,如果Client不关闭,FIN_WAIT2状态将保持到系统重启,越来越多的FIN_WAIT2状态会致使内核Crash。
- 建议调小
net.ipv4.tcp_fin_timeout
参数的值,以便加快系统关闭处于FIN_WAIT2
状态的TCP连接。
解决方法
执行
vi /etc/sysctl.conf
命令,修改或增加以下内容。
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_fin_timeout = 30
net.ipv4.tcp_max_syn_backlog = 8192
net.ipv4.tcp_max_tw_buckets = 5000
执行
sysctl -p
命令,使配置生效。
注:由于
FIN_WAIT2
状态的TCP连接会进入TIME_WAIT
状态,请同时参考问题二:报“Time wait bucket table overflow”错误。
问题四:Linux实例中出现大量CLOSE_WAIT状态的TCP连接
问题现象
执行如下命令,发现当前系统中处于CLOSE_WAIT
状态的TCP连接非常多。
netstat -atn|grep CLOSE_WAIT|wc -l
原因分析
根据实例上的业务量判断CLOSE_WAIT数量是否超出了正常的范围。TCP连接断开时需要进行四次挥手,TCP连接的两端都可以发起关闭连接的请求,若对端发起了关闭连接,但本地没有关闭连接,那么该连接就会处于CLOSE_WAIT状态。虽然该连接已经处于半开状态,但是已经无法和对端通信,需要及时的释放该连接。建议从业务层面及时判断某个连接是否已经被对端关闭,即在程序逻辑中对连接及时关闭,并进行检查。
解决方法
编程语言中对应的读、写函数一般包含了检测CLOSE_WAIT状态的TCP连接功能,可通过执行如下命令,查看当前实例上处于CLOSE_WAIT状态的连接数。Java语言和C语言中关闭连接的方法如下。
netstat -an|grep CLOSE_WAIT|wc -l
Java语言
- 通过
read
方法来判断I/O 。当read方法返回-1
时,则表示已经到达末尾。 - 通过
close
方法关闭该链接。
C语言
检查read
的返回值。
- 若等于0,则可以关闭该连接。
- 若小于0,则查看error,若不是AGAIN,则同样可以关闭连接。
问题五:客户端配置NAT后仍无法访问ECS或RDS远端服务器
提示:此处涉及的内核参数如下。
net.ipv4.tcp_tw_recycle
net.ipv4.tcp_timestamps
问题现象
客户端配置NAT后无法访问远端ECS、RDS,包括配置了SNAT的VPC中的ECS实例。同时无法访问其他ECS或RDS等云产品,抓包检测发现远端ECS和RDS对客户端发送的SYN包没有响应。
原因分析
若远端服务器的内核参数net.ipv4.tcp_tw_recycle
和net.ipv4.tcp_timestamps
的值都为1,则远端服务器会检查每一个报文中的时间戳(Timestamp),若Timestamp不是递增的关系,不会响应这个报文。配置NAT后,远端服务器看到来自不同客户端的源IP相同,但NAT前每一台客户端的时间可能会有偏差,报文中的Timestamp就不是递增的情况。
解决方法
- 远端服务器为ECS时,修改
net.ipv4.tcp_tw_recycle
参数为0。 - 远端服务器为RDS等PaaS服务时。RDS无法直接修改内核参数,需要在客户端上修改
net.ipv4.tcp_tw_recycle
参数和net.ipv4.tcp_timestamps
参数为0。
问题六:存在大量处于TIME_WAIT状态的连接
提示:此处涉及的内核参数如下。
- net.ipv4.tcp_syncookies
- net.ipv4.tcp_tw_reuse
- net.ipv4.tcp_tw_recycle
- net.ipv4.tcp_fin_timeout
问题现象
云服务器中存在大量处于TIME_WAIT状态的连接。
原因分析
首先通过调用close()发起主动关闭,在发送最后一个ACK之后会进入time_wait的状态,该发送方会保持2MSL时间之后才会回到初始状态。MSL值是数据包在网络中的最大生存时间。产生这种结果使得这个TCP连接在2MSL连接等待期间,定义这个连接的四元组(客户端IP地址和端口,服务端IP地址和端口号)不能被使用。
解决方法
通过netstat或ss命令,可以看到大量处于TIME_WAIT状态的连接。
执行如下命令,查看TIME_WAIT状态的连接数量。
netstat -n | awk ‘/^tcp/ {++y[$NF]} END {for(w in y) print w, y[w]}’
执行如下命令,编辑系统内核配置。
vi /etc/sysctl.conf
修改或加入以下内容。
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30
执行命令如下命令,使配置生效。
/sbin/sysctl -p
问题七:服务端断开连接后客户端仍然可以看到是建立连接的
提示:此处涉及的内核参数为
net.ipv4.tcp_fin_timeout
。
问题现象
服务端A与客户端B建立了TCP连接,之后服务端A主动断开了连接,但是在客户端B上仍然看到连接是建立的。
原因分析
通常是由于修改了服务端默认的net.ipv4.tcp_fin_timeout
内核参数所致。
解决方法
执行如下命令,修改配置,设置
net.ipv4.tcp_fin_timeout=30
vi /etc/sysctl.conf
```
执行如下命令,使配置生效。
sysctl -p
问题八:无法在本地网络环境通过SSH连接Linux实例
提示:此处涉及的内核参数如下。
- net.ipv4.tcp_tw_recycle
- net.ipv4.tcp_timestamps
问题现象
无法在本地网络环境通过SSH连接Linux实例,或者访问该Linux实例上的HTTP业务出现异常。Telnet测试会被reset。
原因分析
如果您的本地网络是NAT共享方式上网,该问题可能是由于本地NAT环境和目标Linux相关内核参数配置不匹配导致。尝试通过修改目标Linux实例内核参数来解决问题。
远程连接目标Linux实例。
执行如下命令,查看当前配置。
cat /proc/sys/net/ipv4/tcp_tw_recycle
cat /proc/sys/net/ipv4/tcp_timestamps
查看上述两个配置的值是否为 0,如果为 1,NAT环境下的请求可能会导致上述问题。
解决方法
通过如下方式将上述参数值修改为0。
执行如下命令,修改配置文件。
vi /etc/sysctl.conf
添加如下内容。
net.ipv4.tcp_tw_recycle=0
net.ipv4.tcp_timestamps=0
执行如下命令,使配置生效。
sysctl -p
重新SSH登录实例,或者进行业务访问测试。
文档涉及的Linux内核参数说明
文档涉及的Linux内核参数说明如下,可参考如下参数说明进行相关操作。
参数 | 描述 |
---|---|
net.core.rmem_default | 默认的TCP数据接收窗口大小(字节)。 |
net.core.rmem_max | 最大的TCP数据接收窗口(字节)。 |
net.core.wmem_default | 默认的TCP数据发送窗口大小(字节)。 |
net.core.wmem_max | 最大的TCP数据发送窗口(字节)。 |
net.core.netdev_max_backlog | 当内核处理速度比网卡接收速度慢时,这部分多出来的包就会被保存在网卡的接收队列上,而该参数说明了这个队列的数量上限。在每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。 |
net.core.somaxconn | 该参数定义了系统中每一个端口最大的监听队列的长度,是个全局参数。该参数和net.ipv4.tcp_max_syn_backlog 有关联,后者指的是还在三次握手的半连接的上限,该参数指的是处于ESTABLISHED的数量上限。若您的ECS实例业务负载很高,则有必要调高该参数。listen(2) 函数中的参数backlog 同样是指明监听的端口处于ESTABLISHED的数量上限,当backlog 大于net.core.somaxconn 时,以net.core.somaxconn 参数为准。 |
net.core.optmem_max | 表示每个套接字所允许的最大缓冲区的大小。 |
net.ipv4.tcp_mem | 确定TCP栈应该如何反映内存使用,每个值的单位都是内存页(通常是4KB)。 第一个值是内存使用的下限。 第二个值是内存压力模式开始对缓冲区使用应用压力的上限。 第三个值是内存使用的上限。在这个层次上可以将报文丢弃,从而减少对内存的使用。对于较大的BDP可以增大这些值(注:其单位是内存页而不是字节)。 |
net.ipv4.tcp_rmem | 为自动调优定义Socket使用的内存。 第一个值是为Socket接收缓冲区分配的最少字节数。 第二个值是默认值(该值会被rmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值。 第三个值是接收缓冲区空间的最大字节数(该值会被rmem_max覆盖)。 |
net.ipv4.tcp_wmem | 为自动调优定义Socket使用的内存。 第一个值是为Socket发送缓冲区分配的最少字节数。 第二个值是默认值(该值会被wmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值。 第三个值是发送缓冲区空间的最大字节数(该值会被wmem_max覆盖)。 |
net.ipv4.tcp_keepalive_time | TCP发送keepalive探测消息的间隔时间(秒),用于确认TCP连接是否有效。 |
net.ipv4.tcp_keepalive_intvl | 探测消息未获得响应时,重发该消息的间隔时间(秒)。 |
net.ipv4.tcp_keepalive_probes | 在认定TCP连接失效之前,最多发送多少个keepalive探测消息。 |
net.ipv4.tcp_sack | 启用有选择的应答(1表示启用),通过有选择地应答乱序接收到的报文来提高性能,让发送者只发送丢失的报文段,(对于广域网通信来说)这个选项应该启用,但是会增加对CPU的占用。 |
net.ipv4.tcp_fack | 启用转发应答,可以进行有选择应答(SACK)从而减少拥塞情况的发生,这个选项也应该启用。 |
net.ipv4.tcp_timestamps | TCP时间戳(会在TCP包头增加12B),以一种比重发超时更精确的方法(参考RFC 1323)来启用对RTT的计算,为实现更好的性能应该启用这个选项。 |
net.ipv4.tcp_window_scaling | 启用RFC 1323定义的window scaling,要支持超过64KB的TCP窗口,必须启用该值(1表示启用),TCP窗口最大至1GB,TCP连接双方都启用时才生效。 |
net.ipv4.tcp_syncookies | 该参数表示是否打开TCP同步标签(SYN_COOKIES ),内核必须开启并编译CONFIG_SYN_COOKIES,SYN_COOKIES 可以防止一个套接字在有过多试图连接到达时,引起过载。默认值0表示关闭。 当该参数被设置为1,且SYN_RECV 队列满了之后,内核会对SYN包的回复做一定的修改,即在响应的SYN+ACK包中,初始的序列号是由源IP+Port、目的IP+Port及时间这五个参数共同计算出一个值组成精心组装的TCP包。由于ACK包中确认的序列号并不是之前计算出的值,恶意攻击者无法响应或误判,而请求者会根据收到的SYN+ACK包做正确的响应。启用net.ipv4.tcp_syncookies 后,会忽略net.ipv4.tcp_max_syn_backlog 。 |
net.ipv4.tcp_tw_reuse | 表示是否允许将处于TIME-WAIT状态的Socket(TIME-WAIT的端口)用于新的TCP连接。 |
net.ipv4.tcp_tw_recycle | 能够更快地回收TIME-WAIT套接字。 |
net.ipv4.tcp_fin_timeout | 对于本端断开的Socket连接,TCP保持在FIN-WAIT-2状态的时间(秒)。对方可能会断开连接或一直不结束连接或不可预料的进程死亡。 |
net.ipv4.ip_local_port_range | 表示TCP/UDP协议允许使用的本地端口号。 |
net.ipv4.tcp_max_syn_backlog | 该参数决定了系统中处于SYN_RECV 状态的TCP连接数量。SYN_RECV 状态指的是当系统收到SYN后,作为SYN+ACK响应后等待对方回复三次握手阶段中的最后一个ACK的阶段。对于还未获得对方确认的连接请求,可保存在队列中的最大数目。如果服务器经常出现过载,可以尝试增加这个数字。默认为1024。 |
net.ipv4.tcp_low_latency | 允许TCP/IP栈适应在高吞吐量情况下低延时的情况,这个选项应该禁用。 |
net.ipv4.tcp_westwood | 启用发送者端的拥塞控制算法,它可以维护对吞吐量的评估,并试图对带宽的整体利用情况进行优化,对于WAN通信来说应该启用这个选项。 |
net.ipv4.tcp_bic | 为快速长距离网络启用Binary Increase Congestion,这样可以更好地利用以GB速度进行操作的链接,对于WAN通信应该启用这个选项。 |
net.ipv4.tcp_max_tw_buckets | 该参数设置系统的TIME_WAIT的数量,如果超过默认值则会被立即清除。默认为180000。 |
net.ipv4.tcp_synack_retries | 指明了处于SYN_RECV状态时重传SYN+ACK包的次数。 |
net.ipv4.tcp_abort_on_overflow | 设置该参数为1时,当系统在短时间内收到了大量的请求,而相关的应用程序未能处理时,就会发送Reset包直接终止这些链接。建议通过优化应用程序的效率来提高处理能力,而不是简单地Reset。默认值为0。 |
net.ipv4.route.max_size | 内核所允许的最大路由数目。 |
net.ipv4.ip_forward | 接口间转发报文。 |
net.ipv4.ip_default_ttl | 报文可以经过的最大跳数。 |
net.netfilter.nf_conntrack_tcp_timeout_established | 在指定之间内,已经建立的连接如果没有活动,则通过iptables进行清除。 |
net.netfilter.nf_conntrack_max | 哈希表项最大值。 |
Linux实例常用内核网络参数介绍与常见问题处理---重要的更多相关文章
- 阿里云(四)Linux 实例常用内核网络参数介绍与常见问题处理
Linux 实例常用内核网络参数介绍与常见问题处理 https://help.aliyun.com/knowledge_detail/41334.html
- Linux 实例常用内核网络参数介绍与常见问题处理
本文总结了常见的 Linux 内核参数及相关问题.修改内核参数前,您需要: 从实际需要出发,最好有相关数据的支撑,不建议随意调整内核参数. 了解参数的具体作用,且注意同类型或版本环境的内核参数可能有所 ...
- linux更新grub内核启动参数的方法
#!/bin/bash set -x set -e export PS4=+{$LINENO:${FUNCNAME[0]}} trap 'echo "---NEWKERNARGS=$NEWK ...
- 优化Linux下的内核TCP参数来提高服务器负载能力
http://blog.renhao.org/2010/07/setup-linux-kernel-tcp-settings/ /proc/sys/net目录 所有的TCP/IP参数都位于/proc/ ...
- 优化Linux下的内核TCP参数以提高系统性能
内核的优化跟服务器的优化一样,应本着稳定安全的原则.下面以64位的Centos5.5下的Squid服务器为例来说明,待客户端与服务器端建立 TCP/IP连接后就会关闭SOCKET,服务器端连接的端口状 ...
- 压力测试 Jmeter的简单测试及常用查看结果参数介绍
(1)保存方案 (2)创建线程组 线程组用来模拟用户的并发访问 线程组主要包含三个参数:线程数.准备时长(Ramp-Up Period(in seconds)).循环次数. 线程数:虚拟用户数.一个虚 ...
- 深入浅出 JVM GC(4)常用 GC 参数介绍
# 前言 从前面的3篇文章中,我们分析了5个垃圾收集器,还有一些 GC 的算法,那么,在 GC 调优中,我们肯定会先判断哪里出现的问题,然后再根据出现的问题进行调优,而调优的手段就是 JVM 提供给我 ...
- Linux下查看某个进程打开的文件数-losf工具常用参数介绍
Linux下查看某个进程打开的文件数-losf工具常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在linux操作系统中,一切皆文件.通过文件不仅仅可以访问常规数据,还 ...
- 使用ioctl向linux内核传递参数的方法实例
该篇实例是摘自网络(无法追根溯源倒低是哪位"前"辈写的了) 一.应用层 uint16 data16; if ((fd = socket(AF_INET, SOCK_STREAM, ...
随机推荐
- Mybatis SqlNode源码解析
1.ForEachSqlNode mybatis的foreach标签可以将列表.数组中的元素拼接起来,中间可以指定分隔符separator <select id="getByUserI ...
- 《吐血整理》保姆级系列教程-玩转Fiddler抓包教程(6)-Fiddler状态面板详解
1.简介 按照从上往下,从左往右的计划,今天就轮到介绍和分享Fiddler的状态面板了. 2.状态面板概览 Fiddler的状态面板概览,如下图所示: 3.状态面板详解 Fiddler底端状态栏面板详 ...
- 第十二天python3 匿名函数
python借助lambda表达式构建匿名函数: 参数列表不需要小括号: 冒号是用来分割参数列表和表达式的: 不需要使用return,表达式的值,就是匿名函数返回值: lambda表达式(匿名函数)只 ...
- CSS 导航栏底线向两边延伸动画
利用元素向左移动的同时,宽度变长,实现两边延伸效果. react代码: <ul className="tab"> { moduleList.map((item: any ...
- css基础06
精灵图就是只要导入一张照片(这张照片里面有很多很多的小图标和照片),然后通过background-position来移动位置,使网页显示出对应图片或者图标.一般都是负值. 下载然后导入项目里. 不同浏 ...
- node.js操作数据库
var sys = require('sys'); var Client = require('mysql').Client; var client = new Client(); client.us ...
- [b01lers2020]Welcome to Earth-1
1.打开之后界面如下,查看源代码信息,发现chase文件,结果如下: 2.访问chase文件会一直跳转到die界面,那就只能抓包进行查看,发现leftt文件,结果如下: 3.访问leftt文件并查看源 ...
- placeholder 设置换行三种方式
在 html 中编写代码时保留代码换行 <textarea name="" id="" cols="30" rows="10 ...
- SQL Server查询优化
从上至下优化 看过一篇文章,印象深刻,里面将数据库查询优化分为四个大的方向 使用钞能力--给DB服务器加物理配置,内存啊,CPU啊,硬盘啊,全上顶配 替换存储系统--根据实际的业务情况选择不同的存储数 ...
- http、https和Cookie
http和https http,https 都是网络传输协议 是用于网络相关传输,http走的是明文传输,https走的密文传输(内部采用对称加密以及非对称加密).对应的https安全性要高于http ...