Quantexa CDI(场景决策智能)Syneo平台介绍
Quantexa
大数据服务提供商, 使用实体解析, 关系分析和人工智能技术帮助客户进行数据处理和预防金融犯罪.
企业概览
- 2016年成立, 当前规模500人
- 服务特色是场景决策智能CDI(contextual decision intelligence)
- 落地场景主要是金融机构的反洗钱反金融诈骗监控, 数据管理, 风控
- 解决的问题: 监管合规, 提高警告准确率, 降低成本, 提高行业竞争力
- 面向的主要客户是银行, 保险, 支付机构, 运营商(CSP)和政府机构, 已知客户有汇丰银行, 渣打银行, 丹斯克银行(丹麦), 纽约&梅隆银行, OFX(澳洲支付机构)
时间轴
2016
- 2016-03
- Founded, 15 people(6 financial crime experts). Work for anti financial crimes for HSBC, services: AML, people traffic, solve the data problems
- 2016-09
- SWIFT Innotribe Chanllenge Winner
2017
- 2017-03 3.3m in Series A investment
- 2017-10 Microsoft Accelerator Programme Winner
- 2017-? Synechron became a customer
2018
- 2018-04 Featured in Financial Times
- 2018-04 Named in Tech Nation Future 50
- 2018-04 HSBC became a customer
- 2018-07 Open US office in NY and Boston
- 2018-08 30m in Series B investment
- 2018-09 100 employees
- 2018-? Danske Bank a successful pilot
2019
- 2019-02 Featured in The Times
- 2019-02 Host QuanCon
- 2019-03 Appeared on CNN(TV)
- 2019-05 Named "Cool Vendor" by Gartner
- 2019-07 Appeared on Sky(TV)
- 2019-09 200 employees
2020
- 2020-07 64.7m in Series C funding. The round was led by Evolution Equity Partners,
- 2020-09 Engagement with BNY Mellon
2021
- 2021-07 153m in Series D funding from Warburg Pincus and a growing group of blue-chip investors
- 2021-09 BNY Mellon has completed a strategic investment in Quantexa.
- 2021-10 Quantexa 2 release - easier deployment, simplify navigation, introducing contextual search for unstructured data
2022
- 2022-04 Quantexa 2.1 release, introducing Geospatial Search
# 服务和解决方案
Quantexa使客户能够从数据中做出更好的决策, 根据其网站介绍, 分为监控和调查两个方向, 可能是同一个产品的两个不同侧重的说明.
场景监控 contextual monitoring
结合内部数据和外部数据构建关系网络,降低误报, 提高速度和准确率, 并识别之前未发现的风险
- Enhance detection rates with advanced models that leverage network-based context to reduce false positives and generate more accurate alerts.
- Generate more meaningful alerts with context for investigators, leading to faster, trusted decisions.
- Find new, previously unknown risk from external sources to optimize future alert generation.
调查 investigations
借助可视化功能快速响应警报和信息请求, 对每个客户和交易对手创建单独画像以及实时的关联和行为图谱, 更快识别金融犯罪和欺诈风险.
- Automate manual work, and free up experts to focus on real risk.
- Create a true single view of each customer or counterparty, and a real-time network of relevant connections and behaviors.
- Go deeper and wider in your data to identify financial crime and fraud risks and typologies, faster.
涉及的服务明细
反洗钱 KYC & AML
KYC和AML是大部分国家都存在的金融业监管要求
- 交易监控 Transaction Monitoring, 对异常的账户交易发出预警
- 重点监控名单 Watch List
- 身份校验 Identity Verification, 保管客户的身份以及机构信息,确保实际受益人信息的准确性以及有效性
- 案例管理 Case Management
- 行为分析 Behavioral Analytics
- 风险评估 Risk Assessment, 交易是否涉及敏感国家或地区
- 客户是否包括担任重要公职的人员 PEP Screening, 受制裁或涉及任何负面新闻/媒体信息
- 可疑行为报告 SARs (suspicious activity report)
- 调查管理 Investigation Management
- 合规报告 Compliance Reporting
欺诈检测 Fraud Detection
- 自定义欺诈参数 Custom Fraud Parameters
- 模式识别, 银行业/保险业 Pattern Recognition: for Banking, for Insurance Industry
- 调查记录 Investigator Notes
- 支票欺诈监控 Check Fraud Monitoring
- 内部欺诈监控 Internal Fraud Monitoring
- 权限安全管理 Access Security Management
- 针对电商和数字货币的交易审核 Transaction Approval: for eCommerce, for Crypto
数据管理 Master Data Management
- 关系映射 Relationship Mapping
- 数据屏蔽 Data Masking
- 流程管理 Process Management
- 可视化 Visualization
- 匹配和合并 Match & Merge
- 层级管理 Hierarchy Management
- 数据源集成 Data Source Integrations
- 多领域/多模型 Multi-Domain
- 数据治理 Data Governance
- 元数据管理 Metadata Management
产品介绍
以上服务和解决方案的载体为 Quantexa Syneo 平台. 当前(2022.04)最新版本为2.1
产品明细
Quantexa利用大数据和人工智能技术,发现潜在的客户联系和行为,以解决金融犯罪、客户洞察和数据分析方面的需求
快速数据导入 Rapid data ingestion
可扩展, 高性能的数据订阅(导入), 不需要复杂的ETL; 对现有的数据和结构进行自动判断, 配置, 清洗, 解析和标准化; 开箱即用, 带默认的实体定义和属性设置, 带预先训练好的模型
可以接受结构化, 非结构化和半结构化的输入数据; 导入时验证数据字段, 识别问题; 提供UI使用户能够进行操作并解决问题
Quantexa 为其客户提供了许多分析模型, 目前可用的模型包括资本市场反洗钱(包括外汇、股票和贵金属), 融情报机构评分, 减少误报, 贸易反洗钱, 客户画像评分, 证券反洗钱检测, 贸易融资欺诈, 信用卡申请欺诈等
Quantexa 还提供定制建模和技能培训服务.
Use Quantexa Fusion to model complex source data and ingest it fast with no-code, scalable, high performance data preparation and ingestion – and no complex ETL.
Automatically infer, configure, cleanse, parse and standardize potential linking attributes from existing data schema.
Get started quickly with out of the box, state-of-the-art AI-tuned models. Define entities and their attributes.
实体解析 Entity Resolution
Quantexa的实体解析功连接内部和外部数据得到更好的准确率, 甚至对于没有唯一关键词的数据也能得到较好效果; 定义和创建人, 业务, 地址等各种数据资产并输出给批量和流水线处理
最终用户可以深入到一个实体中,查看不同的数据记录如何以及为什么被匹配到同一个实体中. 用户可以动态调整解析匹配逻辑.
Connect internal and external data sources with unprecedented accuracy, even from poor quality data without unique match keys.
Create data assets for people, businesses, addresses and more, and expose them through batch and real-time data pipelines.
关系图谱 Network Generation
使用图展示实体之间的真实关联, 这些关联包括供应链, 合作伙伴, 法律层级, 社会关系等; 基于动态实体解析为不同的场景, 并生成不同的关联; 挖掘用户, 机构, 地址和交易之间的关联
- Use to generate graphs that link entities into relevant, real world networks representing supply chains, associates, legal hierarchies, social connections and more.
- Build on dynamic entity resolution to generate different networks for different use cases.
- Reveal the context of how people, organizations, places, and transactions relate to each other.
关联(场景)分析 Contextual analytics
使用Quantexa Assess(可能是Syneo内部的一个数据资产管理模块, 外部并无单独介绍)创建和维护数据关系模型; 为机器学习和AI服务的实体图谱分析工具.
客户能够导入外部检测模型或使用他们自己喜欢的分析环境, 如KNIME, R或Python. 建模方法促进了透明性和可解释性,并且可以批量或实时运行.
Use Quantexa Assess to empower data scientists to build and maintain their own contextual models with ease.
Productively engineer features for machine learning and AI with native support for entity graphs and networks to build robust features for machine learning and AI.
Quantexa支持的机器学习算法和适用场景
可视化和探查 Visualization and exploration
调查人员可以搜索平台获取的各种客户和交易数据
界面支持上千用户同时操作, 进行快速和精确的合作决策. 界面支持可视化探索和分析, 创建标签, 高亮感兴趣的数据; 同时提供API给第三方系统如CRM等进行集成
数据隐私合规: Quantexa具有限制对客户数据访问的能力,以允许其客户遵守当地的数据隐私要求。当调查人员与实体和图谱交互时,他们只能根据用户的权限查看数据.
Support thousands of users with faster, more accurate, collaborative decisioning using Quantexa’s UI to search, visualize and explore context; investigate and thematically analyze; and review analytically created flags within their context, highlighting points of interest.
Or, use Quantexa’s APIs for external application platforms including CRM and case management.
工作流程
数据导入和管理
场景分析和调查
产品技术栈
语言
- Scala
Quantexa Syneo的主要开发语言 - Python
数据工作者常用语言, 用于机器学习以及数据处理 - R
数据工作者常用语言, 函数丰富, 常用于科学计算, 统计和数据分析, 作图
存储
- PostgreSQL
中小型关系数据存储 - Oracle
大中型关系数据存储, 商业软件 - Hadoop/Hive
大型分布式存储和处理, 用于时效性要求不高的计算任务, 猜测在这个产品中主要用于给Spark Streaming提供存储 - Elastic
数据检索引擎, 支持分布式集群 - Apache Spark, Spark Streaming
数据处理引擎, 支持容错的高吞吐量实时流数据处理, 可以运行在Hadoop或Google Cloud, Kubernetes之上, 使用内存计算, 速度较快 - Apache Kafka
消息队列, 流式数据管道, 用于在Spark前接收和暂存数据
容器
- Redhat Openshift (Kubernetes)
第三方服务
- Google Cloud Storage
- Google Cloud SQL
- AWS
- Azure
- Salesforce
界面展示
暂时只能搜索到图谱分析部分的界面
这两个是版本2.1中新增的地理位置分析功能
市场驱动
监管需求 Regulatory requirements
for financial firms’ ability to detect money laundering continue to mount. The price of failure is hefty fines (banks worldwide have paid several billion dollars in fines for AML lapses since 2010), embarrassing headlines, and potential liability for the firm’s chief AML officer in the form of personal fines and even jail time.
创新需求 Innovation
in financial services is creating an ever-growing attack surface. Faster payments and the increasing electronification of payment flows create utility for businesses, but criminals benefit from these innovations as well.
客户期望 Customers’ expectations
for a smooth and easy experience put pressure on firms to reduce lag time and friction across the customer life cycle. These expectations start at the onboarding process and extend throughout the customer journey.
历史遗留技术升级压力 Legacy technology
that produces high volumes of alerts, false positives, and often false negatives compounds the challenges that banks face. Banks often have to throw bodies at the problem to keep up with alert volume. This is not only expensive but often problematic in terms of finding skilled analysts to fill these positions.
舆论压力 Social pressure
from citizens who feel that banks, as trusted custodians, have an ethical obligation to detect and intercede in money laundering, human trafficking, and fraud incidents
市场趋势 Trends
针对银行的犯罪攻击技术在不断升级 Escalating criminal attacks on banks use advanced technology.
Organized crime rings, rogue nations, and terrorists are all leveraging automation and artificial intelligence in their attacks on the financial ecosystem. These sophisticated attacks, combined with the growing volume of electronic payments, make it ifficult for FIs to keep pace with the rising tide of alerts.
监管机构希望金融机构升级技术协助其更好提升情报能力 Regulators are encouraging FIs to use more sophisticated detection techniques.
Especially in the AML arena, concern over regulatory response to the use of advanced analytics has been an inhibitor to adoption. The new openness among regulators is encouraging FIs to invest in technology that can help them extract intelligence from their customer data.
银行希望提高运营效率 Banks are looking for operational efficiencies.
While many FIs initially turned to outsourcing first- and secondlevel alert triage to less expensive offshore locations, the benefits of these strategies were short-lived, as alert volumes continue to multiply. Many banks are now focused on tackling the source of the issue—dirty source data and high levels of false-positive alerts.
新技术的采用给银行等金融企业创造竞争优势 Adoption of next-generation financial crime technology is creating competitive differentiation.
Firms that use advanced technologies to vet customers’ identities and transactions differentiate themselves from their competitors, as they provide more responsive and streamlined customer interactions, improve their operational efficiency, and meet regulatory requirements.
参考
- Official site https://www.quantexa.com/
- 2019-08-05 Jamie Hutton, chief technology officer at Quantexa, about building a culture of compliance within the banking industry.
https://www.youtube.com/watch?v=X5vaAGfytA8 - 2020-03-02 Ian Lees is the Head of Research and Development at Quantexa, he gave an introduction to Quantexa (our hosts) at the start of this months Scala in the City, Lightbend Edition
https://www.youtube.com/watch?v=f5A1R_JCvqA - 2020-07 Quantexa Raises $64.7M to Drive Growth in Big Data and Analytics Ecosystem
https://www.datanami.com/this-just-in/quantexa-raises-64-7m-to-drive-growth-in-big-data-and-analytics-ecosystem/ - 2021-03-09 Jennifer Calvery, Head of Financial Crime HSBC. How HSBC Uses Technology To Combat Crime. See how HSBC is using technology to manage its data effectively and improve financial crime detection to tackle horrific crimes, from terrorist financing and human trafficking.
https://www.youtube.com/watch?v=JmnI2K6OVNg - Follows a successful 12-month engagement with BNY Mellon using Quantexa's platform and includes an expanded relationship focused on data fabric innovation at the bank
https://www.prnewswire.com/news-releases/bny-mellon-invests-in-quantexa-technology-301388579.html - OFX with Quantexa: OFX is an Australian foreign exchange and payments company https://cloud.google.com/customers/ofx-quantexa
- Case of using Quantexa https://thefinancialcrimenews.com/why-illegal-trafficking-in-organs-is-growing-fastbut-few-are-talking-about-itby-steve-farrer/
- Dun & Bradstreet partner with Quantexa https://www.dnb.com/solutions/partner/quantexa-partners-detail.html
- Positive, PR service provider for Quantexa https://www.positivemarketing.com/case-studies/quantexa/
Quantexa CDI(场景决策智能)Syneo平台介绍的更多相关文章
- 基于SpringBoot+SSM实现的Dota2资料库智能管理平台
Dota2资料库智能管理平台的设计与实现 摘 要 当今社会,游戏产业蓬勃发展,如PC端的绝地求生.坦克世界.英雄联盟,再到移动端的王者荣耀.荒野行动的火爆.都离不开科学的游戏管理系统,游戏管理系 ...
- 大数据和Hadoop平台介绍
大数据和Hadoop平台介绍 定义 大数据是指其大小和复杂性无法通过现有常用的工具软件,以合理的成本,在可接受的时限内对其进行捕获.管理和处理的数据集.这些困难包括数据的收入.存储.搜索.共享.分析和 ...
- Storm 系列(二)实时平台介绍
Storm 系列(二)实时平台介绍 本章中的实时平台是指针对大数据进行实时分析的一整套系统,包括数据的收集.处理.存储等.一般而言,大数据有 4 个特点: Volumn(大量). Velocity(高 ...
- Android平台介绍
一.Android平台介绍 什么是智能手机 具有独立的操作系统,独立的运行空间,可以由用户自行安装软件.游戏.导航等第三方应用程序,并可以通过移动通讯网络来实现无线网络接入的手机类型总称. 智能手机操 ...
- 奇点云数据中台技术汇(一) | DataSimba——企业级一站式大数据智能服务平台
在这个“数据即资产”的时代,大数据技术和体量都有了前所未有的进步,若企业能有效使用数据,让数据赚钱,这必将成为企业数字化转型升级的有力武器. 奇点云自研的一站式大数据智能服务平台——DataSimba ...
- ITTC数据挖掘平台介绍(五) 数据导入导出向导和报告生成
一. 前言 经过了一个多月的努力,软件系统又添加了不少新功能.这些功能包括非常实用的数据导入导出,对触摸进行优化的画布和画笔工具,以及对一些智能分析的报告生成模块等.进一步加强了平台系统级的功能. 马 ...
- ITTC数据挖掘平台介绍(七)强化的数据库, 虚拟化,脚本编辑器
一. 前言 好久没有更新博客了,最近一直在忙着找工作,目前差不多尘埃落定.特别期待而且准备的都很少能成功,反而是没怎么在意的最终反而能拿到,真是神一样的人生. 言归正传,一直以来,数据挖掘系统的数据类 ...
- cWeb开发框架,基于asp.net的cWeb应用开发平台介绍(二)
cWeb是基于微软的.Net Framework 4框架,数据库是sql server 2008 r2. cWeb开发框架下载,点击这里去下载. cWeb开发框架借鉴三层架构理论分为三层,分别是:cD ...
- 打造强势智能手表平台:Testin云測携手索尼招募全球开发人员
打造强势智能手表平台:Testin云測携手索尼招募全球开发人员 2014/10/27 · Testin · 业界资讯 日前,全球最大的移动游戏.应用真机和用户云測试平台Testin云測宣布联手索尼公司 ...
随机推荐
- 重定向(Redirect)和请求转发(Forward)
一.调用方式 我们知道,在servlet中调用转发.重定向的语句如下: request.getRequestDispatcher("new.jsp").forward(reques ...
- 小白都能看懂的 Spring 源码揭秘之Spring MVC
目录 前言 Spring MVC 请求流程 Spring MVC 两大阶段 初始化 HttpServletBean#init() FrameworkServlet#initServletBean Fr ...
- Spring配置文件?
Spring配置文件是个XML 文件,这个文件包含了类信息,描述了如何配置它们,以及如何相互调用.
- 详细描述一下 Elasticsearch 更新和删除文档的过程?
1.删除和更新也都是写操作,但是 Elasticsearch 中的文档是不可变的,因此不 能被删除或者改动以展示其变更: 2.磁盘上的每个段都有一个相应的.del 文件.当删除请求发送后,文档并没有真 ...
- Flask-Migrate使用教程
功能:flask-migrate是flask的一个扩展模块,主要是扩展数据库表结构的. 项目准备:一个干净的Flask项目,下载连接地址: https://pan.baidu.com/s/1WqdIN ...
- 学习Puppet(一)
puppet的入门 1.简介 puppet是一种采用C/S星状结构的linux.Unix平台的集中配置管理系统. puppet拥有自己的语言,可管理配置文件.用户.cron任务.软件包.系统服务等. ...
- 数据结构:DHUOJ 删除链表的顺数及倒数第N个节点
删除链表的顺数及倒数第N个节点 作者: turbo时间限制: 1S章节: DS:数组和链表 题目描述: 可使用以下代码,完成其中的removeNth函数,其中形参head指向无头结点单链表,n为要删除 ...
- 复习——高级语法对象原型,es5新增语法
今天的开始进入了js的高级语法 我马上也要复习完了,之前学到闭包递归,就回去复习去了,复都复习这么久而且,复习的过程真的比学知识的过程难熬的多,只不过终于要复习完了,再来点es6的新语法马上就要步入v ...
- 关于js中this指向的总结
js中this指向问题一直是个坑,之前一直是懵懵懂懂的,大概知道一点,但一直不知道各种情况下指向有什么区别,今天亲自动手测试了下this的指向. 1.在对象中的this对象中的this指向我们创建的对 ...
- Python爬虫报错:"HTTP Error 403: Forbidden"
错误原因:主要是由于该网站禁止爬虫导致的,可以在请求加上头信息,伪装成浏览器访问User-Agent. 新增user-agent信息: headers = {'User-Agent':'Mozilla ...