https://leetcode-cn.com/problems/network-delay-time/submissions/

// n <= 100
class Solution {
int N = 105, M = 6005;
// (邻接表-链式前向星)
int[] w = new int[M]; // 边的权重
int[] edge = new int[M]; // 边指向的节点
int[] head = new int[N]; // 存储的是某个节点的链表(节点指向边的结合)的第一个节点
int[] next = new int[M]; // 表示链表中的下一条边 int[] dist = new int[N]; // 起点到i的最短路
boolean[] vis = new boolean[N]; int n, k;
int idx = 0;
int inf = 0x3f3f3f3f; void add(int a, int b, int c) {
// 链表中添加新节点
w[idx] = c;
edge[idx] = b;
next[idx] = head[a]; head[a] = idx;
idx++;
} void dijkstra() {
// 起始先将所有的点标记为「未更新」和「距离为正无穷」
Arrays.fill(dist, inf);
Arrays.fill(vis, false);
// 只有起点最短距离为 0
dist[k] = 0;
// (点编号, 到起点的距离)
PriorityQueue<int[]> pq = new PriorityQueue<>((x, y) -> {
return x[1] - y[1];
});
pq.offer(new int[]{k, 0});
while (!pq.isEmpty()) {
int[] poll = pq.poll();
int index = poll[0], distance = poll[1];
if (vis[index]) continue;
vis[index] = true;
// 标记该点「已更新」,并使用该点更新其他点的「最短距离」
for (int i = head[index]; i != -1; i = next[i]) { // 链表最末端都是-1
int to = edge[i];
if (dist[to] > dist[index] + w[i]) {
dist[to] = dist[index] + w[i];
pq.offer(new int[]{to, dist[to]});
}
}
}
} public int networkDelayTime(int[][] times, int n, int k) {
this.n = n;
this.k = k;
// 初始化每个节点的链表的头结点
Arrays.fill(head, -1);
// 建图
for (int[] time: times) {
int from = time[0], to = time[1], val = time[2];
add(from, to, val);
}
// 最短路
dijkstra();
// 遍历答案
int ans = 0;
for (int i = 1; i <= n; i++) {
ans = Math.max(ans, dist[i]);
}
return ans == inf? -1: ans;
}
}

进阶:https://leetcode-cn.com/problems/count-nodes-with-the-highest-score/solution/gong-shui-san-xie-jian-tu-dfs-by-ac_oier-ujfo/

// 链式前向星 求 每一个节点能到达的节点数量
class Solution {
int[] cnt;
int N = 100010, M = 100010 * 2;
int[] head = new int[N];
int[] next = new int[M];
int[] edge = new int[M]; int idx = 0;
void add(int x, int y) {
edge[idx] = y;
next[idx] = head[x];
head[x] = idx;
idx++;
} public int countHighestScoreNodes(int[] parents) {
int n = parents.length;
cnt = new int[n];
Arrays.fill(head, -1); for (int i = 0; i < n; i++) {
int from = parents[i];
int to = i;
if (from == -1) continue;
add(from, to);
} // dfs
dfs(0);
long maxVal = 0L;
int maxNum = 0;
for (int i = 0; i < n; i++) {
long tmp = 0;
if (parents[i] == -1) { // 根节点
long res = 1;
for (int j = head[i]; j != -1; j = next[j]) {
int to = edge[j];
res *= cnt[to];
}
tmp = res;
} else if (head[i] == -1) { // 叶子节点
tmp = n-1;
} else { // 非叶子节点
long res = 1;
for (int j = head[i]; j != -1; j = next[j]) {
int to = edge[j];
res *= cnt[to];
}
tmp = res * (n-cnt[i]);
}
if (tmp > maxVal) {
maxVal = tmp;
maxNum = 1;
} else if (tmp == maxVal) {
maxNum++;
}
}
return maxNum;
} // 求以u为根节点的子树的节点数量
public int dfs(int u) {
int num = 1;
// 遍历所有的边
for (int i = head[u]; i != -1; i = next[i]) {
int to = edge[i];
num += dfs(to);
}
cnt[u] = num;
return num;
}
}

链式前向星+dijkstra的更多相关文章

  1. [poj3159]Candies(差分约束+链式前向星dijkstra模板)

    题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...

  2. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  3. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  4. 【最短路】Dijkstra+ 链式前向星+ 堆优化(优先队列)

    Dijkstra+ 链式前向星+ 优先队列   Dijkstra算法 Dijkstra最短路算法,个人理解其本质就是一种广度优先搜索.先将所有点的最短距离Dis[ ]都刷新成∞(涂成黑色),然后从起点 ...

  5. Floyd && Dijkstra +邻接表 +链式前向星(真题讲解来源:城市路)

    1381:城市路(Dijkstra) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 4066     通过数: 1163 [题目描述] 罗老师被邀请参加一个舞会,是 ...

  6. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  7. HDU 2544最短路 【dijkstra 链式前向星+优先队列优化】

    最开始学最短路的时候只会用map二维数组存图,那个时候还不知道这就是矩阵存图,也不懂得效率怎么样 经过几个月的历练再回头看最短路的题, 发现图可以用链式前向星来存, 链式前向星的效率是比较高的.对于查 ...

  8. 链式前向星+SPFA

    今天听说vector不开o2是数组时间复杂度常数的1.5倍,瞬间吓傻.然后就问好的图表达方式,然后看到了链式前向星.于是就写了一段链式前向星+SPFA的,和普通的vector+SPFA的对拍了下,速度 ...

  9. hdu2647 逆拓扑,链式前向星。

    pid=2647">原文地址 题目分析 题意 老板发工资,可是要保证发的工资数满足每一个人的期望,比方A期望工资大于B,仅仅需比B多1元钱就可以.老板发的最低工资为888元.输出老板最 ...

  10. 图的存储结构:邻接矩阵(邻接表)&链式前向星

    [概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...

随机推荐

  1. 「postOI」Cross Swapping

    题意 给出一个 \(n\times n\) 的矩阵 \(A\),你可以进行下述操作任意多次:指定整数 \(k\)(\(1\le k\le n\)),使 \(A_{ni}\) 与 \(A_{in}\) ...

  2. 关于JWT的.net 使用(简单明了直接代码)

    首先第一步:下载插件! 在ui层---控制器所在层添加一个类 然后复制如下 using Microsoft.Extensions.Configuration; using Microsoft.Iden ...

  3. Linux 第七节(LVM,网卡配置)

    LVM 逻辑卷管理器: 解决分区灵活调整大小问题 PV 物理卷 VG 卷组 LV 逻辑卷 pvcreate /dev/sdc vgcreate xiaochong  /dev/sdb /dev/sdc ...

  4. VUE使用axios数据请求时报错 TypeError: Cannot set property 'xxxx' of undefined 的解决办法

    正常定义全局变量: data:function (){ return{ currentOrders:[] } }, 使用Axios发送请求并获取后端数据时,如果在then中使用this.current ...

  5. 微信开发者工具代码管理设置使用SSH Key(使用密码)方法

    参考微信开发社区--使用ssh key无法推送代码.微信开发者工具 SSH key认证 推送.拉取GitHub项目 1.确认已安装git,打开 Git Bash 使用https://git.weixi ...

  6. 《这里分别闭合离合器Zm和Z2会分别有什么效果》 回复

    <这里分别闭合离合器Zm和Z2会分别有什么效果>       https://tieba.baidu.com/p/8246021959       .

  7. FFmpeg转换直播流格式

    mp4转rtsp ffmpeg -re -i 1671680590843.mp4 -vcodec copy -acodec copy -f rtsp rtsp://localhost:8554/liv ...

  8. ADC采样信号RMS测量值的Verilog实现

    术语"RMS"代表"Root-Mean-Squared".大多数书籍将此定义为"产生与等效直流电源相同的加热效果的交流电量",或者沿着这些线 ...

  9. python存储xml格式数据

    例子 import xml.dom.minidom # 在内存中创建一个空的文档 doc = xml.dom.minidom.Document() # 创建一个根节点Managers对象 root = ...

  10. Linux 文件编码操作enca[适用Mac]

    查看文件编码: enca file.csv 修改文件编码 enca -x UTF-8 file.csv