1223. 掷骰子模拟 (Hard)
问题描述
有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。
不过我们在使用它时有个约束,就是使得投掷骰子时, 连续 掷出数字 i
的次数不能超过
rollMax[i]
( i
从 1 开始编号)。
现在,给你一个整数数组 rollMax
和一个整数 n
,请你来计算掷 n
次骰子可得到的不同点数序列的数量。
假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7
之后的结果。
示例 1:
输入:n = 2, rollMax = [1,1,2,2,2,3]
输出:34
解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax
数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 =
34。
示例 2:
输入:n = 2, rollMax = [1,1,1,1,1,1]
输出:30
示例 3:
输入:n = 3, rollMax = [1,1,1,2,2,3]
输出:181
提示:
1 <= n <= 5000
rollMax.length == 6
1 <= rollMax[i] <= 15
解题思路
动态规划
这一题是很明显的动态规划思路,状态定义很好想,状态转移方程也不难确定:
记dp[i][j]
为掷i
次骰子,最后一次结果为j + 1
的可能的组合,要求的答案即dp[n][0] + ... + dp[n][5]
,显然,我们只需排除最后rollMax[j] + 1
次都是j
的情况;
状态转移方程为:
if i <= rollMax[j]
: \(dp[i][j] = \sum\limits_{k = 0}^{5} dp[i - 1][k]\)
else if i == rollMax[j] + 1
: \(dp[i][j] = \sum\limits_{k = 0}^{5} dp[i - 1][k] - 1\)
else
: \(dp[i][j] = \sum\limits_{k = 0}^{5}dp[i - 1][k] - \sum\limits_{k = 0, k\neq j}^{5}dp[i - rollMax[j] - 1][j]\)
记忆化搜索
这里我们从第n
次向第一次倒着考虑,那么我们要关注的几个变量:
- 当前投掷骰子的次数
idx
; - 当前投掷的骰子数字减一,记为
last_num
; - 当前数字往后的最大连续数量,记为
max_len
,例如\(623166\),考虑idx = 5
,那么最大连续数量就是\(2\),这里的max_len
要分等于rollMax[last_num]
和小于rollMax[last_num]
的情况来讨论,小于则可以继续选last_num
,内层递归的max_len
为max_len + 1
;否则必须选其他的数,同时内层递归的max_len
置1;
当前递归的结果应该取下一层递归的结果之和;
边界条件,当idx == 0
时,应该return 1;
cache
数组的三个维度即idx
,last_num
,max_len
,其中max_len <= 15
,所以cache
数组为vector<vector<vector<long>>> cache(n + 1, vector<vector<long>>(16, vector<long>(6, -1)));
代码
动态规划
class Solution {
public:
int dieSimulator(int n, vector<int> &rollMax) {
int mod = 1000000007;
if (n == 1) return 6;
vector<vector<int>> dp(n + 1, vector<int>(6, 0));
for (int i = 0; i < 6; i++) {
dp[0][i] = 1;
dp[1][i] = 1;
}
for (int i = 2; i <= n; i++) {
for (int j = 0; j < 6; j++) {
if (i <= rollMax[j]) {
dp[i][j] = (dp[i - 1][0] + dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][3] + dp[i - 1][4] + dp[i - 1][5]) % mod;
} else if (i == rollMax[j] + 1) {
int tmp_sum = 0;
for (int k = 0; k < 6; k++) {
tmp_sum = (tmp_sum + dp[i - 1][k]) % mod;
}
dp[i][j] = (tmp_sum - 1) % mod;
} else {
int tmp_sum = 0;
int tmp_minus = 0;
for (int k = 0; k < 6; k++) {
tmp_sum = (tmp_sum + dp[i - 1][k]) % mod;
if (k == j) {
continue;
}
tmp_minus = (tmp_minus + dp[i - rollMax[j] - 1][k]) % mod;
}
dp[i][j] = (tmp_sum - tmp_minus + mod) % mod;
}
}
}
int res = 0;
for (int j = 0; j < 6; j++) {
res = (res + dp[n][j]) % mod;
}
return res;
}
};
记忆化搜索
class Solution {
public:
long dfs(int idx, vector<int> &rollMax, int max_len, int last_num, vector<vector<vector<long>>> &cache, int mod) {
if (idx == 0) {
return 1;
}
if (cache[idx][max_len][last_num] >= 0) {
return cache[idx][max_len][last_num] % mod;
}
long res = 0;
if (max_len < rollMax[last_num]) {
for (int i = 0; i < 6; ++i) {
if (i == last_num) {
res += dfs(idx - 1, rollMax, max_len + 1, i, cache, mod);
res %= mod;
} else {
res += dfs(idx - 1, rollMax, 1, i, cache, mod);
res %= mod;
}
}
} else {
for (int i = 0; i < 6; ++i) {
if (i != last_num) {
res += dfs(idx - 1, rollMax, 1, i, cache, mod);
res %= mod;
}
}
}
cache[idx][max_len][last_num] = res % mod;
return cache[idx][max_len][last_num];
}
int dieSimulator(int n, vector<int> &rollMax) {
// 尝试记忆化搜索
vector<vector<vector<long>>> cache(n + 1, vector<vector<long>>(16, vector<long>(6, -1)));
int mod = 1000000007;
return dfs(n, rollMax, 0, 6, cache, mod);
}
};
1223. 掷骰子模拟 (Hard)的更多相关文章
- LeetCode 1223. 掷骰子模拟 Dice Roll Simulation - Java - DP
题目链接:1223. 掷骰子模拟 有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数. 不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[ ...
- python应用-掷骰子模拟-pygal
pygal安装: Linux下: pip install pygal Windows下: python -m pip install pygal 效果如图: # -*- coding: utf-8 - ...
- Python绘制直方图 Pygal模拟掷骰子
#coding=utf-8 from random import randint class Die(): """骰子类""" def __ ...
- 使用python实现模拟掷骰子数据分析
Data:2020/4/8 主题:模拟实现掷骰子数据分析 编译环境:pycharm 库:pygal 说明: code 1:创建一个掷骰子类对象,类方法获得掷骰子随机数1-6,默认6个面,模拟20次将结 ...
- Python Tkinter小实例——模拟掷骰子
什么是Tkinter? Tkinter 是 Python 的标准 GUI 库.Python 使用 Tkinter 可以快速的创建 GUI 应用程序. 由于 Tkinter 是内置到 python 的安 ...
- Python 使用matplotlib模块模拟掷骰子
掷骰子 骰子类 # die.py 骰子类模块 from random import randint class Die(): """骰子类""&quo ...
- 【NOIP2012模拟10.31】掷骰子
题目 太郎和一只免子正在玩一个掷骰子游戏.有一个有N个格子的长条棋盘,太郎和兔子轮流掷一个有M面的骰子,骰子M面分别是1到M的数字.且掷到任意一面的概率是相同的.掷到几.就往前走几步.当谁走到第N格时 ...
- TurnipBit开发板掷骰子小游戏DIY教程实例
转载请以链接形式注明文章来源(MicroPythonQQ技术交流群:157816561,公众号:MicroPython玩家汇) 0x00前言 下面带大家用TurnipBit开发板实现一个简单的小游戏- ...
- python-模拟掷骰子,两个筛子数据可视化
""" 作者:zxj 功能:模拟掷骰子,两个筛子数据可视化 版本:3.0 日期:19/3/24 """ import random impo ...
- Pygal之掷骰子
python之使用pygal模拟掷骰子创建直方图: 1,文件die.py,源码如下: 1 from random import randint 2 3 class Die(): 4 '''表示一个骰子 ...
随机推荐
- JavaScript:操作符:操作符的特点
在JS中,所有的操作符,都同时在做两件事,第一件事是进行计算,第二件事是返回计算的结果,这个结果需要有变量去接收,否则就成为无人认领的数据而被垃圾回收: 在JS中,有很多不常用的操作符以及语法,容易让 ...
- JavaScript:七大基础数据类型:数值number及其表示范围
数值number类型,用来表示任何类型的数字:整数或者浮点数都可以: 实际上,JS中的数值,是一个64位的浮点数,这与Java中的double类型的浮点数是一致的: 但是它有表示的范围,在范围内,JS ...
- Redis数据结构与对象
参考<Redis设计与实现> 系列文章目录和关于我 一丶简单动态字符串 当redis需要的不仅仅是一个字符串字面量,而是一个可以被修改的字符串值时,就会使用SDS(simple dynam ...
- CH579-Lwip-2.12移植
代码可以参考以下链接:https://gitee.com/maji19971221/lwip-routine Lwip可以在以下链接下载:http://download.savannah.gnu.or ...
- eclipse启动一个Springboot项目
1.准备一个Springboot项目 2.配置好maven 注:本地的maven-repository默认路径是在系统盘的.m文件夹.如果想要修改可参考: eclipse修改maven仓库的位置_本本 ...
- java后端整合极光消息推送
目录 1.简介 2.极光Demo 2.1.进入极光官网--应用管理 2.2.快速集成一个Android/iOS的SDK 2.3.java服务端代码 3.参考资料 1.简介 简单来说,就是androi ...
- CVE-2020-1957
漏洞名称 Apache Shiro 认证绕过漏洞 CVE-2020-1957 利用条件 Apache Shiro < 1.5.1 漏洞原理 Apache Shiro 是一款开源安全框架,提供身份 ...
- C组合方案
递归实现组合型枚举 从 1∼n 这 n 个整数中随机选出 m 个,输出所有可能的选择方案. 输入格式 两个整数 n,m ,在同一行用空格隔开. 输出格式 按照从小到大的顺序输出所有方案,每行 1 个. ...
- 交叉编译esp8089
交叉编译esp8089 编译环境: 硬件:全志R528 ubuntu:Linux ubuntu 4.15.0-194-generic #205-Ubuntu SMP Fri Sep 16 19:49: ...
- Hugging News #0106
每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...