大根堆与小根堆性质相比简单很多,不用加特判

直接上代码:

//treap(大根堆性质)
#include<bits/stdc++.h>
#define rint register int
typedef long long ll;
using namespace std;
inline ll read()//快读
{
ll x=0;
bool fg=false;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') fg=true;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+(ch^48);
ch=getchar();
}
return fg?~x+1:x;
}
const int N=1e6+5;
const ll INF=1e9+5;
int n,tot,root;//n 操作次数 tot 记录节点的标号 root 根节点
int ch[N][2];//左右孩子
ll val[N],pai[N],cnt[N],siz[N];
//val 数值 pai 存储优先级 cnt 该数值出现了几次 siz 大小
inline void pushup(int id)//更新siz
{
siz[id]=siz[ch[id][0]]+siz[ch[id][1]]+cnt[id];
//更新,该节点的大小=左子树的大小+右子树的大小+自己出现了几次
}
int New(ll v)//插入新节点
{
val[++tot]=v;
pai[tot]=rand();
//随机函数,随即赋予一个数值,头文件<stdlib.h>
cnt[tot]++;//cnt[tot]=1;
siz[tot]++;//siz[tot]=1;
return tot;
}
void spin(int &id,int d)
//旋转 id 要旋转的节点编号,因为会改变,所以要加& d(direction) 旋转方向
{
int temp=ch[id][d^1];//记录与旋转方向相反的子节点,这里画图自己理解一下
ch[id][d^1]=ch[temp][d];//先存下来
ch[temp][d]=id;//再修改
pushup(id);//先更新原节点
pushup(temp);//再更新旋转后的节点
id=temp;//最后更新id,以便其他操作需要
}
void build()
//初始化,这两个点一个在最左下角,一个在最右下角,这里最左下角的会影响后面有关排名的的查询
{
root=New(-INF);
ch[root][1]=New(INF);
if(pai[root]<pai[ch[root][1]]) spin(root,0);//不符合大根堆性质,就左旋
}
void insert(int &id,ll x)//插入节点
{
if(id==0)//如果已经到叶子节点了,直接插入新节点
{
id=New(x);
return;
}
if(x==val[id]) cnt[id]++;//如果和该节点数值相等,cnt(出现次数)+1
else
{
int d=x<val[id]?0:1;//判断是属于左子树还是右子树
insert(ch[id][d],x);
if(pai[ch[id][d]]>pai[id]) spin(id,d^1);//要符合大根堆的性质
}
pushup(id);//更新大小
}
void del(int &id,ll x)
{
if(!id) return;//如果没有这个点,直接返回
//这里else不能少,因为id是会改变的
if(x==val[id])//就是该节点,进行特判
{
if(cnt[id]>1) cnt[id]--;//出现多次,减一即可
else
{
if(ch[id][0]||ch[id][1])//有子树的情况
{
int d=pai[ch[id][0]]>pai[ch[id][1]]?1:0;//符合大根堆性质
spin(id,d);//旋转
del(ch[id][d],x);//删除
}
else id=0;
}
}
else//如果不是该节点,向子树出发
{
int d=x<val[id]?0:1;
del(ch[id][d],x);
}
pushup(id);//更新大小
}
ll get_rank(int id,ll x)//找x数(这里是数字)的排名(注意,是排名)
{
if(!id) return 0;//如果没有这个数,返回0
if(x<val[id]) return get_rank(ch[id][0],x);
//比当前节点小,向左子树中找
if(x>val[id]) return siz[ch[id][0]]+cnt[id]+get_rank(ch[id][1],x);
//比当前节点大,向右子树中找
return siz[ch[id][0]]+1;
//不大不小,则就是该节点,要返回这个点左子树的大小,并加上自己(也就是+1)
}
ll get_val(int id,ll x)//找排名为x的数(注意,是数字)
{
if(!id) return 0;//如果该节点为空,返回0
if(x<=siz[ch[id][0]]) return get_val(ch[id][0],x);
//如果排名小于等于左子树的大小,就说明排名的这个位置在左子树中
if(x>siz[ch[id][0]]&&x<=siz[ch[id][0]]+cnt[id]) return val[id];
//如果大于左子树大小,小于等于左子树大小+当前节点的大小,则就是该节点
return get_val(ch[id][1],x-siz[ch[id][0]]-cnt[id]);
//以上都不符合,就是在右子树,这里x要减去左子树大小和当前节点的出现次数
}
ll get_pre(ll x)//求前驱
{
int id=root;
ll pre;
while(id)
{
if(val[id]<x)//如果当前节点比x小,记录答案,去右子树中搜更优值
{
pre=val[id];//记录答案
id=ch[id][1];//id转到右子树
}
else id=ch[id][0];//否则,在左子树中搜
}
return pre;
}
ll get_nxt(ll x)//求后继
{
int id=root;
ll nxt;
while(id)
{
if(val[id]>x)//如果当前节点比x大,记录答案,去左子树中搜更优值
{
nxt=val[id];//记录答案
id=ch[id][0];//id转到左子树
}
else id=ch[id][1];//否则,在右子树中搜
}
return nxt;
}
int main()
{
build();//初始化
n=read();//读入操作次数
for(rint i=1;i<=n;++i)
{
int op=read();
ll x=read();
switch(op)
{
case 1:
insert(root,x);
break;
case 2:
del(root,x);
break;
case 3:
printf("%lld\n",get_rank(root,x)-1);
break;
case 4:
printf("%lld\n",get_val(root,x+1));
break;
case 5:
printf("%lld\n",get_pre(x));
break;
case 6:
printf("%lld\n",get_nxt(x));
break;
}
}
return 0;
}

小根堆链接:treap(小根堆)模板 - yi_fan0305 - 博客园 (cnblogs.com)

treap(大根堆)模板的更多相关文章

  1. Java实现堆排序(大根堆)

    堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...

  2. treap完全版模板

    这是我综合poj1442 3481 2352的treap操作 得到treap完全版模板.(经测AC) 结构体Tree { int key; //键值 int size; //该子树总节点个数 int ...

  3. bzoj4919 [Lydsy1706月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  4. bzoj 4919: [Lydsy六月月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  5. BZOJ3224/LOJ104 普通平衡树 treap(树堆)

    您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x2. 删除x(若有多个相同的数,因只删除一个)3. 查询x的排名(若有多个相同的数,因输出最小的排名)4. 查询排名为x的数5. ...

  6. Treap仿set 模板

    Treap仿set 模板 蓝书232 &代码: #include <cstdio> #include <bitset> #include <iostream> ...

  7. BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  8. 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并

    [BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  9. CJOJ 2482 【POI2000】促销活动(STL优先队列,大根堆,小根堆)

    CJOJ 2482 [POI2000]促销活动(STL优先队列,大根堆,小根堆) Description 促销活动遵守以下规则: 一个消费者 -- 想参加促销活动的消费者,在账单下记下他自己所付的费用 ...

随机推荐

  1. IIS项目部署和发布

    VS2019如何把项目部署和发布 这里演示:通过IIS文件publish的方式部署到Windows本地服务器上 第一步(安装IIS) 1.在自己电脑上搜索Windows功能里的[启用或关闭Window ...

  2. QT快速入门

    QT快速入门 本文档将介绍QT工程的创建.UI界面布局,并以计数器为例了解QT中多线程的用法,最终完成一个基础的QT项目. 1 创建QT工程文件 在安装好QT之后,能够在其安装组件中找到Qt Crea ...

  3. 同一个目标ip在windows下使用tracert正常但是在linux下使用traceroute中间节点不显示?tracert与traceroute原理与抓包分析

    针对第一个问题先说结论 windows的tracert是使用icmp来探路,linux的traceroute是使用udp探测,如果想达到和windows下一个效果,建议使用-I参数或mtr 下面是原理 ...

  4. Redis(1)- Redis数据库的安装和配置

    1.Redis安装 1.1.Linux环境安装Redis step-1:下载Redis 进入官网找到下载地址 https://redis.io/download wget https://github ...

  5. 一次生产环境的docker MySQL故障

    问题 昨天下午本来要去吃下午茶,然后前端小伙伴突然说接口怎么崩了,我登上sentry一看,报错了 (2005, "Unknown MySQL server host 'mysql' (-3) ...

  6. Excel导表工具-开源

    功能 支持int.float.bool.string基础类型 支持数组 支持kv 支持枚举 支持unity类型vector3,vector2,color 自动生成csharp类 单个excel中多个s ...

  7. 在linux上开启酸酸乳,未完待续

    在服务器调试深度学习环境的时候总需要下载conda的包,一直以来都觉得是因为国内访问慢,于是想在服务器上开 ,或者ssr.由于过去用ssr多一些,于是想了解ssr on linux. 1.首先win1 ...

  8. ARM学习1

    ARM相关概念 1.ARM的发展史 1. 1978年,CPU公司 Cambridge processing Unit 2. 1979年 Acorn 3. 1985年, 32位,8MHz, 使用的精简指 ...

  9. 变量作用域——JavaSE基础

    变量作用域 局部变量.成员变量.静态变量的区别 类型 声明位置 从属于 生命周期 局部变量 方法或语句块内部 方法/语句块 从声明位置开始,直到方法或语句块执行完毕,局部变量消失 成员变量 (实例变量 ...

  10. MySQL数据库4

    内容概要 查询关键字 查询关键字之having过滤 查询关键字之distinct去重 查询关键字之order by排序 查询关键字之limit分页 查询关键字之regexp正则 多表查询思路 可视化软 ...