4.9 给定一颗二叉树,其中每个结点都含有一个数值。设计一个算法,打印结点数值总和等于某个给定值的所有路径。注意,路径不一定非得从二叉树的根节点或叶子节点开始或结束。

类似于leetcode:Path Sum II

C++实现代码:(使用了双重的递归)对于不含有parent指针域时。

#include<iostream>
#include<new>
#include<vector>
using namespace std; //Definition for binary tree
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution
{
public:
vector<vector<int> > path;
vector<vector<int> > pathSum(TreeNode *root, int sum)
{
vector<int> tmp;
hasPathSum(root,sum,tmp);
//改变开始的节点,不一定要从根结点开始,遍历从每一个节点开始
if(root->left)
pathSum(root->left,sum);
if(root->right)
pathSum(root->right,sum);
return path;
}
void hasPathSum(TreeNode *root, int sum,vector<int> tmp)
{
if(root==NULL)
return;
tmp.push_back(root->val);
//改变结束的地方,不一定要到叶子节点
if((sum-root->val)==)
{
path.push_back(tmp);
}
if(root->left)
hasPathSum(root->left,sum-root->val,tmp);
if(root->right)
hasPathSum(root->right,sum-root->val,tmp);
}
void createTree(TreeNode *&root)
{
int i;
cin>>i;
if(i!=)
{
root=new TreeNode(i);
if(root==NULL)
return;
createTree(root->left);
createTree(root->right);
}
}
};
int main()
{
Solution s;
TreeNode *root;
s.createTree(root);
vector<vector<int> > path=s.pathSum(root,);
for(auto a:path)
{
for(auto v:a)
cout<<v<<" ";
cout<<endl;
}
}

方法二:如果结点中包含指向父亲结点的指针,那么,只需要去遍历这棵二叉树, 然后从每个结点开始,不断地去累加上它父亲结点的值直到父亲结点为空(这个具有唯一性, 因为每个结点都只有一个父亲结点。也正因为这个唯一性, 可以不另外开额外的空间来保存路径),如果等于给定的值sum,则打印输出。

实现的方法:

void find_sum(Node* head, int sum){
if(head == NULL) return;
Node *no = head;
int tmp = ;
for(int i=; no!=NULL; ++i){
tmp += no->key;
if(tmp == sum)
print(head, i);
no = no->parent;
}
find_sum(head->lchild, sum);
find_sum(head->rchild, sum);
}

打印输出时,只需要提供当前结点的指针,及累加的层数即可。然后从当前结点开始, 不断保存其父亲结点的值(包含当前结点)直到达到累加层数,然后逆序输出即可。

代码如下:

void print(Node* head, int level){
vector<int> v;
for(int i=; i<level; ++i){
v.push_back(head->key);
head = head->parent;
}
while(!v.empty()){
cout<<v.back()<<" ";
v.pop_back();
}
cout<<endl;
}

方法三:如果结点中不包含指向父亲结点的指针,则在二叉树从上向下查找路径的过程中, 需要为每一次的路径保存中间结果,累加求和仍然是从下至上的,对应到保存路径的数组, 即是从数组的后面开始累加的,这样能保证遍历到每一条路径。

代码如下:

void print2(vector<int> v, int level){
for(int i=level; i<v.size(); ++i)
cout<<v.at(i)<<" ";
cout<<endl;
}
void find_sum2(Node* head, int sum, vector<int> v, int level){
if(head == NULL) return;
v.push_back(head->key);
int tmp = ;
for(int i=level; i>-; --i){
tmp += v.at(i);
if(tmp == sum)
print2(v, i);
}
vector<int> v1(v), v2(v);
find_sum2(head->lchild, sum, v1, level+);
find_sum2(head->rchild, sum, v2, level+);
}

方法二 完整代码:

#include<iostream>
#include<new>
#include<map>
#include<vector>
using namespace std; struct BinarySearchTree
{
int elem;
BinarySearchTree *parent;
BinarySearchTree *left;
BinarySearchTree *right;
BinarySearchTree(int x):elem(x),parent(NULL),left(NULL),right(NULL) {}
}; void insert(BinarySearchTree *&root,int z)
{
BinarySearchTree *y=new BinarySearchTree(z);
if(root==NULL)
{
root=y;
return;
}
else if(root->left==NULL&&z<root->elem)
{
root->left=y;
y->parent=root;
return;
}
else if(root->right==NULL&&z>root->elem)
{
root->right=y;
y->parent=root;
return;
}
if(z<root->elem)
insert(root->left,z);
else
insert(root->right,z);
} void createBST(BinarySearchTree *&root)
{
int arr[]= {,,,,,,,,,};
for(auto a:arr)
insert(root,a);
} //使用level的原因就是因为,不一定要到根,只有根的父节点为NULL
void print(BinarySearchTree *head,int level)
{
vector<int> vec;
for(int i=;i<level;++i)
{
vec.push_back(head->elem);
head=head->parent;
}
while(!vec.empty())
{
cout<<vec.back()<<" ";
vec.pop_back();
}
cout<<endl;
}
//root选择的是当前结束的节点,也就是从下往上开始最下面的节点,而node是往上找到的刚好满足的最后一个结点,root是在不断加深的
void find_sum(BinarySearchTree *root,int sum)
{
if(root==NULL)
return;
BinarySearchTree *node=root;
int tmp=;
for(int i=;node!=NULL;++i)
{
tmp+=node->elem;
if(tmp==sum)
print(root,i);
node=node->parent;
}
find_sum(root->left,sum);
find_sum(root->right,sum);
}
int main()
{
BinarySearchTree *root=NULL;
createBST(root);
cout<<"find sum is: "<<endl;
find_sum(root,);
return ;
}

方法三 完整代码:

#include<iostream>
#include<new>
#include<map>
#include<vector>
using namespace std; struct BinarySearchTree
{
int elem;
BinarySearchTree *parent;
BinarySearchTree *left;
BinarySearchTree *right;
BinarySearchTree(int x):elem(x),parent(NULL),left(NULL),right(NULL) {}
}; void insert(BinarySearchTree *&root,int z)
{
BinarySearchTree *y=new BinarySearchTree(z);
if(root==NULL)
{
root=y;
return;
}
else if(root->left==NULL&&z<root->elem)
{
root->left=y;
y->parent=root;
return;
}
else if(root->right==NULL&&z>root->elem)
{
root->right=y;
y->parent=root;
return;
}
if(z<root->elem)
insert(root->left,z);
else
insert(root->right,z);
} void createBST(BinarySearchTree *&root)
{
int arr[]= {,,,,,,,,,};
for(auto a:arr)
insert(root,a);
} //使用level记录选择v中的从哪个下标开始相加
void print(vector<int> v,int level)
{
for(int i=level;i<v.size();++i)
cout<<v[i]<<" ";
cout<<endl;
}
//root开始,将当前层的值加入v中
void find_sum(BinarySearchTree *root,int sum,vector<int> v,int level)
{
if(root==NULL)
return;
v.push_back(root->elem);
int tmp=;
for(int i=level;i>-;--i)
{
tmp+=v[i];
if(tmp==sum)
print(v,i);
}
//每一层将当前层的结点的值放入v中,由于不是传递的引用,所以同一层放入v中的值不会影响,从root结点开始保存每一层的
find_sum(root->left,sum,v,level+);
find_sum(root->right,sum,v,level+);
}
int main()
{
BinarySearchTree *root=NULL;
createBST(root);
vector<int> v;
cout<<"find sum is: "<<endl;
find_sum(root,,v,);
return ;
}

careercup-树与图 4.9的更多相关文章

  1. SqlServer-无限递归树状图结构设计和查询

    在现实生活中,公司的部门设计会涉及到很多子部门,然后子部门下面又存在子部门,形成类似判断的树状结构,比如说评论楼中楼的评论树状图,职位管理的树状图结构等等,实现类似的树状图数据结构是在开发中经常出现的 ...

  2. Android开源图表之树状图和饼状图的官方示例的整理

    最近由于工作需要,所以就在github上搜了下关于chart的三方框架 官方地址https://github.com/PhilJay/MPAndroidChart 由于工作需要我这里整理了一份Ecli ...

  3. D3树状图给指定特性的边特别显示颜色

    D3作为前端图形显示的利器,功能之强,对底层技术细节要求相对比较多. 有一点,就是要理解其基本的数据和节点的匹配规则架构,即enter,update和exit原理,我前面的D3基础篇中有介绍过,不明白 ...

  4. D3树状图异步按需加载数据

    D3.js这个绘图工具,功能强大不必多说,完全一个Data Driven Document的绘图工具,用户可以按照自己的数据以及希望实现的图形,随心所欲的绘图. 图形绘制,D3默认采用的是异步加载,但 ...

  5. [整理] ES5 词法约定文档树状图

    将ES5 词法说明整理为了树状图,方便查阅,请自行点开小图看大图:

  6. bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]

    4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...

  7. vue 树状图数据的循环 递归循环

    在main.js中注册一个子组件 在父组件中引用 树状图的数据格式 绑定一个数据传入子组件,子组件props接收数据 子组件中循环调用组件,就实现了递归循环

  8. ztree 文件夹类型的 树状图

    未套程序的源代码: 链接:http://pan.baidu.com/s/1nuHbxhf 密码:4aw2 已套程序的源代码: css样式: /*发布邮件 选择领导弹窗*/ .xuandao{ disp ...

  9. visio画等分树状图

    一 树状图形状 Search里搜索Tree,找到Double Tree或者Multi Tree的形状 二 分出更多branch 按住主干上的黄色小方块,拖出更多分支. 三 等分分支 将每个分支和对应的 ...

  10. ArcGIS教程:树状图

    摘要 构造可显示特征文件里连续合并类之间的属性距离的树示意图(树状图). 使用方法 · 输入特征文件必须採用预定的特征文件格式. 特征文件可使用 Iso 聚类或创建特征工具来创建.该文件必须至少包括两 ...

随机推荐

  1. SPRING IN ACTION 第4版笔记-第四章Aspect-oriented Spring-001-什么是AOP

    一. Aspect就是把会在应用中的不同地方重复出现的非业务功能的模块化,比如日志.事务.安全.缓存 In software development, functions that span mult ...

  2. 146. LRU Cache

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...

  3. mapreduce实现"浏览该商品的人大多数还浏览了"经典应用

    输入: 日期    ...cookie id.        ...商品id.. xx            xx                        xx 输出: 商品id        ...

  4. Linux下搭建BT服务器

    P2P(Peer to Peer 即对等网络)就是在这种背景下提出的一种网络技术,P2P可以简单地定义为通过直接交换信息,共享计算机资源和服务,对等计算机兼有客户机和服务器的功能.在这种网络中所有的节 ...

  5. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  6. [编译] g++ 与 Makefile

    g++ -c CppSoureFile -o ObjectCodeFile -c 编译而不链接 -lm 链接数学库 -static 生成静态链接的程序

  7. 【转】JNI学习积累之一 ---- 常用函数大全

    原文网址:http://blog.csdn.net/qinjuning/article/details/7595104 本文原创,转载请注明出处:http://blog.csdn.net/qinjun ...

  8. 如何组建理想SOA团队

    趋向采用 SOA 软件开发领域的主要发展趋势是从传统软件体系结构过渡到面向服务的体系结构 (SOA).在传统软件体系结构中,将项目视为单个新应用程序的交付.在SOA中,将项目视为集成服务的交付——一些 ...

  9. Curl之获取外网IP

    获取外网IP:curl -s ifconfig.me

  10. 【libsvm学习】

    参考: http://www.cnblogs.com/bigshuai/articles/2883256.html http://www.cnblogs.com/tornadomeet/archive ...