4.9 给定一颗二叉树,其中每个结点都含有一个数值。设计一个算法,打印结点数值总和等于某个给定值的所有路径。注意,路径不一定非得从二叉树的根节点或叶子节点开始或结束。

类似于leetcode:Path Sum II

C++实现代码:(使用了双重的递归)对于不含有parent指针域时。

#include<iostream>
#include<new>
#include<vector>
using namespace std; //Definition for binary tree
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution
{
public:
vector<vector<int> > path;
vector<vector<int> > pathSum(TreeNode *root, int sum)
{
vector<int> tmp;
hasPathSum(root,sum,tmp);
//改变开始的节点,不一定要从根结点开始,遍历从每一个节点开始
if(root->left)
pathSum(root->left,sum);
if(root->right)
pathSum(root->right,sum);
return path;
}
void hasPathSum(TreeNode *root, int sum,vector<int> tmp)
{
if(root==NULL)
return;
tmp.push_back(root->val);
//改变结束的地方,不一定要到叶子节点
if((sum-root->val)==)
{
path.push_back(tmp);
}
if(root->left)
hasPathSum(root->left,sum-root->val,tmp);
if(root->right)
hasPathSum(root->right,sum-root->val,tmp);
}
void createTree(TreeNode *&root)
{
int i;
cin>>i;
if(i!=)
{
root=new TreeNode(i);
if(root==NULL)
return;
createTree(root->left);
createTree(root->right);
}
}
};
int main()
{
Solution s;
TreeNode *root;
s.createTree(root);
vector<vector<int> > path=s.pathSum(root,);
for(auto a:path)
{
for(auto v:a)
cout<<v<<" ";
cout<<endl;
}
}

方法二:如果结点中包含指向父亲结点的指针,那么,只需要去遍历这棵二叉树, 然后从每个结点开始,不断地去累加上它父亲结点的值直到父亲结点为空(这个具有唯一性, 因为每个结点都只有一个父亲结点。也正因为这个唯一性, 可以不另外开额外的空间来保存路径),如果等于给定的值sum,则打印输出。

实现的方法:

void find_sum(Node* head, int sum){
if(head == NULL) return;
Node *no = head;
int tmp = ;
for(int i=; no!=NULL; ++i){
tmp += no->key;
if(tmp == sum)
print(head, i);
no = no->parent;
}
find_sum(head->lchild, sum);
find_sum(head->rchild, sum);
}

打印输出时,只需要提供当前结点的指针,及累加的层数即可。然后从当前结点开始, 不断保存其父亲结点的值(包含当前结点)直到达到累加层数,然后逆序输出即可。

代码如下:

void print(Node* head, int level){
vector<int> v;
for(int i=; i<level; ++i){
v.push_back(head->key);
head = head->parent;
}
while(!v.empty()){
cout<<v.back()<<" ";
v.pop_back();
}
cout<<endl;
}

方法三:如果结点中不包含指向父亲结点的指针,则在二叉树从上向下查找路径的过程中, 需要为每一次的路径保存中间结果,累加求和仍然是从下至上的,对应到保存路径的数组, 即是从数组的后面开始累加的,这样能保证遍历到每一条路径。

代码如下:

void print2(vector<int> v, int level){
for(int i=level; i<v.size(); ++i)
cout<<v.at(i)<<" ";
cout<<endl;
}
void find_sum2(Node* head, int sum, vector<int> v, int level){
if(head == NULL) return;
v.push_back(head->key);
int tmp = ;
for(int i=level; i>-; --i){
tmp += v.at(i);
if(tmp == sum)
print2(v, i);
}
vector<int> v1(v), v2(v);
find_sum2(head->lchild, sum, v1, level+);
find_sum2(head->rchild, sum, v2, level+);
}

方法二 完整代码:

#include<iostream>
#include<new>
#include<map>
#include<vector>
using namespace std; struct BinarySearchTree
{
int elem;
BinarySearchTree *parent;
BinarySearchTree *left;
BinarySearchTree *right;
BinarySearchTree(int x):elem(x),parent(NULL),left(NULL),right(NULL) {}
}; void insert(BinarySearchTree *&root,int z)
{
BinarySearchTree *y=new BinarySearchTree(z);
if(root==NULL)
{
root=y;
return;
}
else if(root->left==NULL&&z<root->elem)
{
root->left=y;
y->parent=root;
return;
}
else if(root->right==NULL&&z>root->elem)
{
root->right=y;
y->parent=root;
return;
}
if(z<root->elem)
insert(root->left,z);
else
insert(root->right,z);
} void createBST(BinarySearchTree *&root)
{
int arr[]= {,,,,,,,,,};
for(auto a:arr)
insert(root,a);
} //使用level的原因就是因为,不一定要到根,只有根的父节点为NULL
void print(BinarySearchTree *head,int level)
{
vector<int> vec;
for(int i=;i<level;++i)
{
vec.push_back(head->elem);
head=head->parent;
}
while(!vec.empty())
{
cout<<vec.back()<<" ";
vec.pop_back();
}
cout<<endl;
}
//root选择的是当前结束的节点,也就是从下往上开始最下面的节点,而node是往上找到的刚好满足的最后一个结点,root是在不断加深的
void find_sum(BinarySearchTree *root,int sum)
{
if(root==NULL)
return;
BinarySearchTree *node=root;
int tmp=;
for(int i=;node!=NULL;++i)
{
tmp+=node->elem;
if(tmp==sum)
print(root,i);
node=node->parent;
}
find_sum(root->left,sum);
find_sum(root->right,sum);
}
int main()
{
BinarySearchTree *root=NULL;
createBST(root);
cout<<"find sum is: "<<endl;
find_sum(root,);
return ;
}

方法三 完整代码:

#include<iostream>
#include<new>
#include<map>
#include<vector>
using namespace std; struct BinarySearchTree
{
int elem;
BinarySearchTree *parent;
BinarySearchTree *left;
BinarySearchTree *right;
BinarySearchTree(int x):elem(x),parent(NULL),left(NULL),right(NULL) {}
}; void insert(BinarySearchTree *&root,int z)
{
BinarySearchTree *y=new BinarySearchTree(z);
if(root==NULL)
{
root=y;
return;
}
else if(root->left==NULL&&z<root->elem)
{
root->left=y;
y->parent=root;
return;
}
else if(root->right==NULL&&z>root->elem)
{
root->right=y;
y->parent=root;
return;
}
if(z<root->elem)
insert(root->left,z);
else
insert(root->right,z);
} void createBST(BinarySearchTree *&root)
{
int arr[]= {,,,,,,,,,};
for(auto a:arr)
insert(root,a);
} //使用level记录选择v中的从哪个下标开始相加
void print(vector<int> v,int level)
{
for(int i=level;i<v.size();++i)
cout<<v[i]<<" ";
cout<<endl;
}
//root开始,将当前层的值加入v中
void find_sum(BinarySearchTree *root,int sum,vector<int> v,int level)
{
if(root==NULL)
return;
v.push_back(root->elem);
int tmp=;
for(int i=level;i>-;--i)
{
tmp+=v[i];
if(tmp==sum)
print(v,i);
}
//每一层将当前层的结点的值放入v中,由于不是传递的引用,所以同一层放入v中的值不会影响,从root结点开始保存每一层的
find_sum(root->left,sum,v,level+);
find_sum(root->right,sum,v,level+);
}
int main()
{
BinarySearchTree *root=NULL;
createBST(root);
vector<int> v;
cout<<"find sum is: "<<endl;
find_sum(root,,v,);
return ;
}

careercup-树与图 4.9的更多相关文章

  1. SqlServer-无限递归树状图结构设计和查询

    在现实生活中,公司的部门设计会涉及到很多子部门,然后子部门下面又存在子部门,形成类似判断的树状结构,比如说评论楼中楼的评论树状图,职位管理的树状图结构等等,实现类似的树状图数据结构是在开发中经常出现的 ...

  2. Android开源图表之树状图和饼状图的官方示例的整理

    最近由于工作需要,所以就在github上搜了下关于chart的三方框架 官方地址https://github.com/PhilJay/MPAndroidChart 由于工作需要我这里整理了一份Ecli ...

  3. D3树状图给指定特性的边特别显示颜色

    D3作为前端图形显示的利器,功能之强,对底层技术细节要求相对比较多. 有一点,就是要理解其基本的数据和节点的匹配规则架构,即enter,update和exit原理,我前面的D3基础篇中有介绍过,不明白 ...

  4. D3树状图异步按需加载数据

    D3.js这个绘图工具,功能强大不必多说,完全一个Data Driven Document的绘图工具,用户可以按照自己的数据以及希望实现的图形,随心所欲的绘图. 图形绘制,D3默认采用的是异步加载,但 ...

  5. [整理] ES5 词法约定文档树状图

    将ES5 词法说明整理为了树状图,方便查阅,请自行点开小图看大图:

  6. bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]

    4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...

  7. vue 树状图数据的循环 递归循环

    在main.js中注册一个子组件 在父组件中引用 树状图的数据格式 绑定一个数据传入子组件,子组件props接收数据 子组件中循环调用组件,就实现了递归循环

  8. ztree 文件夹类型的 树状图

    未套程序的源代码: 链接:http://pan.baidu.com/s/1nuHbxhf 密码:4aw2 已套程序的源代码: css样式: /*发布邮件 选择领导弹窗*/ .xuandao{ disp ...

  9. visio画等分树状图

    一 树状图形状 Search里搜索Tree,找到Double Tree或者Multi Tree的形状 二 分出更多branch 按住主干上的黄色小方块,拖出更多分支. 三 等分分支 将每个分支和对应的 ...

  10. ArcGIS教程:树状图

    摘要 构造可显示特征文件里连续合并类之间的属性距离的树示意图(树状图). 使用方法 · 输入特征文件必须採用预定的特征文件格式. 特征文件可使用 Iso 聚类或创建特征工具来创建.该文件必须至少包括两 ...

随机推荐

  1. Linux 信号signal处理机制

    信号是Linux编程中非常重要的部分,本文将详细介绍信号机制的基本概念.Linux对信号机制的大致实现方法.如何使用信号,以及有关信号的几个系统调用. 信号机制是进程之间相互传递消息的一种方法,信号全 ...

  2. python还不能作为主要编程语言的原因:

    1.不太熟悉,容易犯新手错误,2.调试方法不同3.写了一个函数,是否语法正确,不能知道,只有具体调用它的时候才知道4.编辑器太业余,没有输入联想功能5.要查找一个函数或变量在哪里定义的,只能通过搜索的 ...

  3. Oracle系列之序列

    涉及到表的处理请参看原表结构与数据  Oracle建表插数据等等 语法结构:创建序列 create sequence sequence_name start with num increment by ...

  4. POJ_3258_River_Hopscotch_[NOIP2015]_(二分,最大化最小值)

    描述 http://poj.org/problem?id=3258 给出起点和终点之间的距离L,中间有n个石子,给出第i个石子与起点之间的距离d[i],现在要去掉m个石子(不包括起终点),求距离最近的 ...

  5. 从Spring HibernateTemplate模板方法设计模式的实现谈起

    概述 模板方法模式是GOF设计模式中很典型的设计模式,其意图是由抽象父类控制顶级逻辑,并把基本操作的实现推迟到子类去实现,这是通过继承的手段来达到对象的复用.Spring模板方法模式实际是模板方法模式 ...

  6. BILL.WEI]stimulsoft reports 中panel 妙用

    我们在通过stimulsoft reports做报表,有的时候,我们需要通过合并报表的一些中间列元素,我们就可以用到panel组件 如下图,我们需要合并报表中间项,一般手段达不到要求,只能通过嵌套pa ...

  7. sublime text 3 中 SFTP插件 的 配置

    SFTP 插件.主要功能就是通过 FTP/SFTP 连接远程服务器并获取文件列表,可以选择下载编辑.重命名.删除等等操作,点下载编辑之后,可以打开这个文件进行修改.修改完成之后,保存一下会自动上传到远 ...

  8. [综述]领域特定语言(Domain-Specific Language)的概念和意义

    领域特定语言(Domain Specific Language, DSL)是一种为解决特定领域问题而对某个特定领域操作和概念进行抽象的语言.领域特定语言只是针对某个特定的领域,这点与通用编程语言(Ge ...

  9. [转]2-SAT问题及其算法

    转自:http://www.cppblog.com/MatoNo1/archive/2011/07/13/150766.html [2-SAT问题]现有一个由N个布尔值组成的序列A,给出一些限制关系, ...

  10. vmware虚拟机下ubuntu 13.04使用zeranoe脚本交叉编译ffmpeg

    2013-07-01今天是建党节,习总书记指出,党的建设要以“照镜子.正衣冠.洗洗澡.治治病”为总要求.希望我们的党越来越纯洁,为人民谋福利.言归正传,每次项目中需要编译相应的ffmpeg,都很费时费 ...