斐波那契fib
输入N和N个数(N<=10,每个数<=10^17),对于每个数,要输出能用几个斐波那契数加加减减得到
样例输入:
3
5
10
1070
样例输出:
1
2
4
直接拷题解:
fib[i]表示斐波那契数列的第i项,两个结论:
1.一个数不能出现两次:fib[i]+fib[i]=fib[i-2]+fib[i+1],而fib[2]+fib[2]=fib[3],将出现两次的数不断拆分,答案只会减小不会变大。
2.相邻两项不能同时取:fib[i]-fib[i-1]=fib[i-2],fib[i]+fib[i-1]=fib[i+1],将相邻的数不断拆分,答案只会减小不会变大。
对于一个X,要么本身就是fib数,要么用比X大的最小fib数减掉一个数,要么用比X小的最大fib数来加上一个数。
这个故事告诉我们,求出所有fib数后,直接记忆化搜索就可以了。
上代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring> using namespace std; long long n,fib[],f[],x;
int ans(long long x)
{
int r;
if ((x<)&&(f[x]!=)) return f[x];
for (int i=;i<=;i++)
if (fib[i]>x)
{ r=i; break; }
if ((fib[r]==x)||(fib[r-]==x)) { return ; f[x]=; }
if (x<) {
f[x]=min(ans(fib[r-])+ans(x-fib[r-]),ans(fib[r])+ans(fib[r]-x));
return f[x];}
return min(ans(fib[r-])+ans(x-fib[r-]),ans(fib[r])+ans(fib[r]-x));
return f[x];
}
int main()
{
freopen("fib.in","r",stdin);
freopen("fib.out","w",stdout);
fib[]=fib[]=; cin>>n;
for (int i=;i<=;i++) fib[i]=fib[i-]+fib[i-];
//for (int i=1;i<=85;i++) cout<<fib[i]<<' ';
for (int i=;i<=n;i++) cin>>x,cout<<ans(x)<<endl;
//cout<<ans(5);
return ;
}
斐波那契fib的更多相关文章
- bzoj 3657 斐波那契数列(fib.cpp/pas/c/in/out)
空间 512M 时限2s [题目描述] 有n个大于1的正整数a1,a2,…,an,我们知道斐波那契数列的递推式是f(i)=f(i-1)+f(i-2),现在我们修改这个递推式变为f(i)=f(i-1) ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...
- 斐波那契(Fibonacci)数列的几种计算机解法
题目:斐波那契数列,又称黄金分割数列(F(n+1)/F(n)的极限是1:1.618,即黄金分割率),指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…….在数学上,斐波纳契数列以如下 ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 一些代码 I (斐波那契、for...else...、try和return、classmethod、统计个数)
1. 斐波那契 from itertools import islice def fib(): a, b = 0, 1 while True: yield a a, b = b, a+b print ...
- Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数
Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...
- cojs 疯狂的粉刷匠 疯狂的斐波那契 题解报告
疯狂的斐波那契 学习了一些奇怪的东西之后出的题目 最外层要模p是显然的,然而内层并不能模p 那么模什么呢,显然是模斐波那契的循环节 那么我们可以一层层的求出每层的斐波那契循环节 之后在从内向外用矩阵乘 ...
- 斐波那契数 c 语言实现
斐波那契数列,又称黄金数列,指的是这样一个数列:1.1.2.3.5.8.13.21.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2) ...
随机推荐
- ARM 平台上的Linux系统启动流程
开始学习嵌入式开发就一直在使用Linux系统作为学习的平台,到现在无论是PC机还是ARM开发板都已经能顺利地跑起了Linux系统,但是对Linux 的启动流程还是不甚了解.于是开始各种百度谷歌,当然看 ...
- php类的属性
属性声明是由关键字 public,protected 或者 private 开头,后面跟一个普通的变量声明来组成.属性的变量可以设置初始化的默认值,默认值必须是常量. class Car { //定义 ...
- js获取url的get传值函数
function getvl(name) { var reg = new RegExp("(^|\\?|&)"+ name +"=([^&]*)(\\s| ...
- 基于smarty+medoo手搭php简单的框架
1.首先看一下搭建好的smarty目录(箭头位置是后新建的文件夹,也是框架结构的最终目录结构) 2.首先在根目录下新建index.php文件即入口文件,内容如下 <?phprequire_onc ...
- smarty
模板引擎是用于把模板文件和数据内容合并在一起的程序,便于网站开发有利于代码分离和维护,了解一个模板最好知道其工作原理,以便于实现一通万通. 模板文件一般是HTML xml js等类型文件,如果不用模板 ...
- sql join 用法
SQL JOIN 的用法 关于sql语句中的连接(join)关键字,是较为常用而又不太容易理解的关键字,下面这个例子给出了一个简单的解释 --建表table1,table2:create tabl ...
- Swift与Objective-C的兼容“黑魔法”:@objc和Dynamic
Cocoa框架早已烙上了不可磨灭的OC印记,而无数的第三方库都是用OC写成的,这些积累无论是谁都不能小觑.苹果采取了允许开发者在同一个项目中同时使用Swift和OC进行开发的做法,但要想实现互通,又需 ...
- list和数组之间相互的转化
list变成数组: String[] str=(String[]) list.toArray(new String[list.size()]); 数组变成list: List<String> ...
- 关于Java(Hello World程序)
详解 Hello World 应用程序 源码 class HelloWorldApp { public static void main(String[] args) { System.out.pri ...
- 移动应用产品开发-android开发(一)
最近公司希望增添移动开发业务,进行移动互联网开发的调研及产品需求调研. 我主要负责技术解决方案的研究,从android开发开始学习.同时跟经理一起与其他部门同事沟通了解移动开发方面的需求. 在了解an ...