zoj Simple Equation 数论
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5176
AX+BY = XY => (X-B)*(Y-A)= A*B
对A*B因式分解,这里不要乘起来,分A,B因式分解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<sstream>
#include<queue> #define MAXN 105000
#define PI acos(-1.0)
#define LL long long
#define REP(i,n) for(int i=0; i<n; i++)
#define FOR(i,s,t) for(int i=s; i<=t; i++)
#define show(x) { cerr<<">>>"<<#x<<" = "<<x<<endl; }
#define showtwo(x,y) { cerr<<">>>"<<#x<<"="<<x<<" "<<#y<<" = "<<y<<endl; }
using namespace std; LL A,B,X,Y,ansX,ansY,M;
int prime[MAXN],cnt; //生成质数表
LL sum_AB;
struct Factor
{
int p,k; //p^k;
}a[];
int pv; void get_prime()
{
bool flag[MAXN];
memset(flag,,sizeof(flag));
cnt = ; for(int i=; i<MAXN; i++)
{
if(!flag[i])
{
prime[cnt++] = i;
for(int j=i+i; j<MAXN; j+=i) flag[j] = true;
}
}
} void factor_analysis(int c,int d)
{
pv = ;
for(int i=; i<cnt && (c||d); i++)
{
if(c%prime[i] == || d%prime[i] == )
{
a[pv].p = prime[i];
a[pv].k = ;
while(c % prime[i] == ) a[pv].k++,c /= prime[i];
while(d % prime[i] == ) a[pv].k++,d /= prime[i];
pv++;
}
}
if(c != ) a[pv].p = c,a[pv].k = ,pv++;
if(d != ) a[pv].p = d,a[pv].k = ,pv++;
} void dfs(int pos,long long mul)
{
if(pos == pv && sum_AB % mul == )
{
X = mul + B;
Y = sum_AB / mul + A;
if(X >= M && (ansX+ansY > X+Y || (ansX+ansY == X+Y && ansX > X)))
ansX = X, ansY = Y;
return;
}
long long accu = ;
for(int i=; i<=a[pos].k; i++)
{
dfs(pos+,mul*accu);
accu *= a[pos].p;
}
} int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
get_prime();
while(scanf("%lld %lld %lld",&A,&B,&M) == )
{
sum_AB = A*B;
factor_analysis(A,B);
ansX = 1e18+, ansY = ;
dfs(,); if(ansX == 1e18+ ) printf("No answer\n");
else printf("%lld %lld\n",ansX,ansY);
}
}
zoj Simple Equation 数论的更多相关文章
- Ural 2003: Simple Magic(数论&思维)
Do you think that magic is simple? That some hand-waving and muttering incomprehensible blubber is e ...
- Codeforces 919E Congruence Equation ( 数论 && 费马小定理 )
题意 : 给出数 x (1 ≤ x ≤ 10^12 ),要求求出所有满足 1 ≤ n ≤ x 的 n 有多少个是满足 n*a^n = b ( mod p ) 分析 : 首先 x 的范围太大了,所以使 ...
- Hough Transform
Hough Transform Introduction: The Hough transform is an algorithm that will take a collection of poi ...
- Applying Eigenvalues to the Fibonacci Problem
http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...
- Data Visualization – Banking Case Study Example (Part 1-6)
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- Realtime Rendering 5
[Real Time Rendering 5] 1.In radiometry, the function that is used to describe how a surface reflect ...
- (9)How to take a picture of a black hole
https://www.ted.com/talks/katie_bouman_what_does_a_black_hole_look_like/transcript 00:13In the movie ...
- 【Machine Learning is Fun!】1.The world’s easiest introduction to Machine Learning
Bigger update: The content of this article is now available as a full-length video course that walks ...
- Neural Networks and Deep Learning
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...
随机推荐
- [转]利用/*+Ordered*/提高查询性能
[转]利用/*+Ordered*/提高查询性能 2009-02-06 10:46:27| 分类: Oracle | 标签: |字号大中小 订阅 消耗在准备利用Oracle执行计划机制提高查询性能 ...
- js常见事件
1.onblur:(使用在表单元素中,当元素失去焦点的时候执行) 2.onchange:(使用在表单元素中,当某些东西改变是执行) 3.onclick:(鼠标点击一个元素时执行) 4.ondblcli ...
- c++ 重定位输出到DOS
#define USE_WIN32_CONSOLE int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTST ...
- linux 安装Tesseract-OCR
linux 安装Tesseract-OCR 准备工作:一.编译环境: 1. gcc gcc-c++ make(这个环境一般机器都具备,可以忽略) yum install gcc gcc-c++ mak ...
- eclipse查看.project .class隐藏文件
fileter ->*.resource勾选:
- Subline Text默认设置文件Preferences.sublime-settings—Default详解
Subline Text中,点击Preferences,选择Settings - Default 全部属性解析 // While you can edit this file, it's best t ...
- Understanding Memory Management(2)
Understanding Memory Management Memory management is the process of allocating new objects and remov ...
- hadoop 原理: 浅析Hadoop文件格式
Hadoop 作为MR 的开源实现,一直以动态运行解析文件格式并获得比MPP数据库快上几倍的装载速度为优势.不过,MPP数据库社区也一直批评Hadoop由于文件格式并非 为特定目的而建,因此序列化和反 ...
- 注意EntityFramework.extended中的坑
EntityFramework.extended 的好处就不用多说了 详情:https://github.com/loresoft/EntityFramework.Extended 但是使用时还是要注 ...
- BZOJ2553: [BeiJing2011]禁忌
2553: [BeiJing2011]禁忌 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 203 Solved: ...