LCA在线算法ST算法
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法。
离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优。
首先说一下ST算法。
这个算法是基于RMQ(区间最大最小值编号)的,不懂的能够这里学习一些
而求LCA就是把树通过深搜得到一个序列,然后转化为求区间的最小编号。
比方说给出这样一棵树。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveTk5MDA0MTc2OQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
我们通过深搜能够得到这样一个序列:
节点ver 1 3 1 2 5 7 5 6 5 2 4 2 1 (先右后左)
深度R 1 2 1 2 3 4 3 4 3 2 3 2 1
首位first 1 4 2 11 5 8 6
那么我们就能够这样写深搜函数
int tot,head[N],ver[2*N],R[2*N],first[N],dir[N];
//ver:节点编号 R:深度 first:点编号位置 dir:距离
void dfs(int u ,int dep)
{
vis[u] = true; ver[++tot] = u; first[u] = tot; R[tot] = dep;
for(int k=head[u]; k!=-1; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v , w = e[k].w;
dir[v] = dir[u] + w;
dfs(v,dep+1);
ver[++tot] = u; R[tot] = dep;
}
}
搜索得到序列之后假如我们想求4 和 7的 LCA
那么我们找4和7在序列中的位置通过first 数组查找发如今6---11
即7 5 6 5 2 4 在上面图上找发现正好是以2为根的子树。而我们仅仅要找到当中一个深度最小的编号就能够了、
这时候我们就用到了RMQ算法。
维护一个dp数组保存其区间深度最小的下标,查找的时候返回就能够了。
比方上面我们找到深度最小的为2点,返回其编号10就可以。
这部分不会的能够依据上面链接研究一些RMQ
代码能够这样写:
void ST(int n)
{
for(int i=1;i<=n;i++)
dp[i][0] = i;
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
dp[i][j] = R[a]<R[b]? a:b;
}
}
}
//中间部分是交叉的。 int RMQ(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1)
k++;
int a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
return R[a]<R[b]?a:b;
} int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
}
那么接下来的应该不是问题了。
上一个题目hdoj 2586 的AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
//#pragma comment(linker, "/STACK:102400000,102400000") //不须要申请系统栈
const int N = 40010;
const int M = 25;
int dp[2*N][M]; //这个数组记得开到2*N,由于遍历后序列长度为2*n-1
bool vis[N];
struct edge
{
int u,v,w,next;
}e[2*N];
int tot,head[N];
inline void add(int u ,int v ,int w ,int &k)
{
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
u = u^v; v = u^v; u = u^v;
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
}
int ver[2*N],R[2*N],first[N],dir[N];
//ver:节点编号 R:深度 first:点编号位置 dir:距离
void dfs(int u ,int dep)
{
vis[u] = true; ver[++tot] = u; first[u] = tot; R[tot] = dep;
for(int k=head[u]; k!=-1; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v , w = e[k].w;
dir[v] = dir[u] + w;
dfs(v,dep+1);
ver[++tot] = u; R[tot] = dep;
}
}
void ST(int n)
{
for(int i=1;i<=n;i++)
dp[i][0] = i;
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
dp[i][j] = R[a]<R[b]?a:b;
}
}
}
//中间部分是交叉的。
int RMQ(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1)
k++;
int a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
return R[a]<R[b]?a:b;
} int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
} int main()
{
//freopen("Input.txt","r",stdin);
//freopen("Out.txt","w",stdout);
int cas;
scanf("%d",&cas);
while(cas--)
{
int n,q,num = 0;
scanf("%d%d",&n,&q);
memset(head,-1,sizeof(head));
memset(vis,false,sizeof(vis));
for(int i=1; i<n; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,num);
}
tot = 0; dir[1] = 0;
dfs(1,1);
/*printf("节点ver "); for(int i=1; i<=2*n-1; i++) printf("%d ",ver[i]); cout << endl;
printf("深度R "); for(int i=1; i<=2*n-1; i++) printf("%d ",R[i]); cout << endl;
printf("首位first "); for(int i=1; i<=n; i++) printf("%d ",first[i]); cout << endl;
printf("距离dir "); for(int i=1; i<=n; i++) printf("%d ",dir[i]); cout << endl;*/
ST(2*n-1);
while(q--)
{
int u,v;
scanf("%d%d",&u,&v);
int lca = LCA(u,v);
printf("%d\n",dir[u] + dir[v] - 2*dir[lca]);
}
}
return 0;
}
LCA在线算法ST算法的更多相关文章
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- [总结]RMQ问题&ST算法
目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...
- SPOJ RPLN (模板题)(ST算法)【RMQ】
<题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客 >& ...
- hihocoder #1068 : RMQ-ST算法 ( RMQ算法 O(nlogn)处理 O(1)查询 *【模板】 1)初始化d数组直接读入+计算k值用数学函数log2()==*节约时间 )
#1068 : RMQ-ST算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在美国旅行了相当长的一段时间之后,终于准备要回国啦!而在回国之前,他们准备 ...
- 求LCA最近公共祖先的在线ST算法_C++
ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n) 查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...
- LCA在线算法详解
LCA(最近公共祖先)的求法有多种,这里先介绍第一种:在线算法. 声明一下:下面的内容参考了http://www.cnblogs.com/scau20110726/archive/2013/05/26 ...
- LCA问题的ST,tarjan离线算法解法
一 ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...
- hdu-3078 Network(lca+st算法+dfs)
题目链接: Network Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) P ...
- hdu 2586(LCA在线ST)
How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): A ...
随机推荐
- ext 扩展控件—moneyField
/** *数字控件 *带大写提示,和千分位 **/ Ext.define(appNameSpace+'.utils.MoneyField', { extend : 'Ext.form.field.Te ...
- Objective-C 入门(给新人的)
http://www.hengxinsoft.com/2010/12/objective-c-%E5%85%A5%E9%97%A8%EF%BC%88%E7%BB%99%E6%96%B0%E4%BA%B ...
- 采用Json字符串,往服务器回传大量富文本数据时,需要注意的地方,最近开发时遇到的问题。
json字符串中存在常规的用户输入的字符串,和很多的富文本样式标签(用户不能直接看到,点击富文本编辑器中的html源码按钮能看到),例如下面的: <p><strong>富文本& ...
- Codeforces Round #205 (Div. 2) : B
如果某个数出现的次数大于或等于2次,那么平均分配到两个容器里面: 这里利用一个k来使得当出现次数为奇数时候分配得更加均匀: 剩下的就平均分配到两个容器里: 代码: #include<iostre ...
- Stanford Parser学习入门(1)-Eclipse中配置
Stanford Parser是斯坦福大学研发的用于语法分析的工具,属于stanford nlp系列工具之一.本文主要介绍Standfor Parser的入门用法. 在Stanford官方网站下载最新 ...
- 要将PYTHON应用于工作啦
分析同事在线答疑的数据,考评模型还未最终给出: import time import sys import optparse #操作代码和同事名对应的文件 opfile = 'op_name.txt' ...
- 【POJ11855】 Buzzwords (后缀数组)
Description The word “the” is the most commonthree-letter word. It evenshows up inside other words, ...
- Python安装及开发环境配置
Python的语法简洁,功能强大,有大量的第三方开发包(模块).同时Python不像java一样对内存要求非常高,适合做一些经常性的任务方面的编程.根据codeeval网站数据统计显示,连续三年,Py ...
- 查看SGA和PGA使用率
select name,total,round(total-free,2) used, round(free,2) free,round((total-free)/total*100,2) pctus ...
- Bluetooth LE(低功耗蓝牙) - 第二部分
回顾 在前面的文章中我们介绍了Bluetooth LE的背景也说明了我们在本系列文章中将要开发什么,但是还没有实际的代码.我们将在这篇文章中纠正这一点,我们将通过定义 Service/Activity ...