using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.ServiceModel.Channels;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace DeamoSocketAsyncEventArgs
{
// Implements the connection logic for the socket server.
// After accepting a connection, all data read from the client
// is sent back to the client. The read and echo back to the client pattern
// is continued until the client disconnects.
class Server
{
// the maximum number of connections the sample is designed to handle simultaneously
private int m_numConnections;
// buffer size to use for each socket I/O operation
private int m_receiveBufferSize;
// represents a large reusable set of buffers for all socket operations
BufferManager m_bufferManager;
// read, write (don't alloc buffer space for accepts)
const int opsToPreAlloc = 2;
// the socket used to listen for incoming connection requests
Socket listenSocket;
// pool of reusable SocketAsyncEventArgs objects for write, read and accept socket operations
SocketAsyncEventArgsPool m_readWritePool;
// counter of the total # bytes received by the server
int m_totalBytesRead;
// the total number of clients connected to the server
int m_numConnectedSockets;
Semaphore m_maxNumberAcceptedClients;

// Create an uninitialized server instance.
// To start the server listening for connection requests
// call the Init method followed by Start method
//
// <param name="numConnections">the maximum number of connections the sample is designed to handle simultaneously</param>
// <param name="receiveBufferSize">buffer size to use for each socket I/O operation</param>
public Server(int numConnections, int receiveBufferSize)
{
m_totalBytesRead = 0;
m_numConnectedSockets = 0;
m_numConnections = numConnections;
m_receiveBufferSize = receiveBufferSize;
// allocate buffers such that the maximum number of sockets can have one outstanding read and
//write posted to the socket simultaneously
m_bufferManager = new BufferManager(receiveBufferSize * numConnections * opsToPreAlloc, receiveBufferSize);

m_readWritePool = new SocketAsyncEventArgsPool(numConnections);
m_maxNumberAcceptedClients = new Semaphore(numConnections, numConnections);
}

// Initializes the server by preallocating reusable buffers and
// context objects. These objects do not need to be preallocated
// or reused, but it is done this way to illustrate how the API can
// easily be used to create reusable objects to increase server performance.
//
public void Init()
{
// Allocates one large byte buffer which all I/O operations use a piece of. This gaurds
// against memory fragmentation
m_bufferManager.InitBuffer();

// preallocate pool of SocketAsyncEventArgs objects
SocketAsyncEventArgs readWriteEventArg;

for (int i = 0; i < m_numConnections; i++)
{
//Pre-allocate a set of reusable SocketAsyncEventArgs
readWriteEventArg = new SocketAsyncEventArgs();
readWriteEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed);
readWriteEventArg.UserToken = new AsyncUserToken();

// assign a byte buffer from the buffer pool to the SocketAsyncEventArg object
m_bufferManager.SetBuffer(readWriteEventArg);

// add SocketAsyncEventArg to the pool
m_readWritePool.Push(readWriteEventArg);
}

}

// Starts the server such that it is listening for
// incoming connection requests.
//
// <param name="localEndPoint">The endpoint which the server will listening
// for connection requests on</param>
public void Start(IPEndPoint localEndPoint)
{
// create the socket which listens for incoming connections
listenSocket = new Socket(localEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(localEndPoint);
// start the server with a listen backlog of 100 connections
listenSocket.Listen(100);

// post accepts on the listening socket
StartAccept(null);

//Console.WriteLine("{0} connected sockets with one outstanding receive posted to each....press any key", m_outstandingReadCount);
Console.WriteLine("Press any key to terminate the server process....");
Console.ReadKey();
}

// Begins an operation to accept a connection request from the client
//
// <param name="acceptEventArg">The context object to use when issuing
// the accept operation on the server's listening socket</param>
public void StartAccept(SocketAsyncEventArgs acceptEventArg)
{
if (acceptEventArg == null)
{
acceptEventArg = new SocketAsyncEventArgs();
acceptEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(AcceptEventArg_Completed);
}
else
{
// socket must be cleared since the context object is being reused
acceptEventArg.AcceptSocket = null;
}

m_maxNumberAcceptedClients.WaitOne();
bool willRaiseEvent = listenSocket.AcceptAsync(acceptEventArg);
if (!willRaiseEvent)
{
ProcessAccept(acceptEventArg);
}
}

// This method is the callback method associated with Socket.AcceptAsync
// operations and is invoked when an accept operation is complete
//
void AcceptEventArg_Completed(object sender, SocketAsyncEventArgs e)
{
ProcessAccept(e);
}

private void ProcessAccept(SocketAsyncEventArgs e)
{
Interlocked.Increment(ref m_numConnectedSockets);
Console.WriteLine("Client connection accepted. There are {0} clients connected to the server",
m_numConnectedSockets);

// Get the socket for the accepted client connection and put it into the
//ReadEventArg object user token
SocketAsyncEventArgs readEventArgs = m_readWritePool.Pop();
((AsyncUserToken)readEventArgs.UserToken).Socket = e.AcceptSocket;

// As soon as the client is connected, post a receive to the connection
bool willRaiseEvent = e.AcceptSocket.ReceiveAsync(readEventArgs);
if (!willRaiseEvent)
{
ProcessReceive(readEventArgs);
}

// Accept the next connection request
StartAccept(e);
}

// This method is called whenever a receive or send operation is completed on a socket
//
// <param name="e">SocketAsyncEventArg associated with the completed receive operation</param>
void IO_Completed(object sender, SocketAsyncEventArgs e)
{
// determine which type of operation just completed and call the associated handler
switch (e.LastOperation)
{
case SocketAsyncOperation.Receive:
ProcessReceive(e);
break;
case SocketAsyncOperation.Send:
ProcessSend(e);
break;
default:
throw new ArgumentException("The last operation completed on the socket was not a receive or send");
}

}

// This method is invoked when an asynchronous receive operation completes.
// If the remote host closed the connection, then the socket is closed.
// If data was received then the data is echoed back to the client.
//
private void ProcessReceive(SocketAsyncEventArgs e)
{
// check if the remote host closed the connection
AsyncUserToken token = (AsyncUserToken)e.UserToken;
if (e.BytesTransferred > 0 && e.SocketError == SocketError.Success)
{
//increment the count of the total bytes receive by the server
Interlocked.Add(ref m_totalBytesRead, e.BytesTransferred);
Console.WriteLine("The server has read a total of {0} bytes", m_totalBytesRead);

//echo the data received back to the client
e.SetBuffer(e.Offset, e.BytesTransferred);
bool willRaiseEvent = token.Socket.SendAsync(e);
if (!willRaiseEvent)
{
ProcessSend(e);
}

}
else
{
CloseClientSocket(e);
}
}

// This method is invoked when an asynchronous send operation completes.
// The method issues another receive on the socket to read any additional
// data sent from the client
//
// <param name="e"></param>
private void ProcessSend(SocketAsyncEventArgs e)
{
if (e.SocketError == SocketError.Success)
{
// done echoing data back to the client
AsyncUserToken token = (AsyncUserToken)e.UserToken;
// read the next block of data send from the client
bool willRaiseEvent = token.Socket.ReceiveAsync(e);
if (!willRaiseEvent)
{
ProcessReceive(e);
}
}
else
{
CloseClientSocket(e);
}
}

private void CloseClientSocket(SocketAsyncEventArgs e)
{
AsyncUserToken token = e.UserToken as AsyncUserToken;

// close the socket associated with the client
try
{
token.Socket.Shutdown(SocketShutdown.Send);
}
// throws if client process has already closed
catch (Exception) { }
token.Socket.Close();

// decrement the counter keeping track of the total number of clients connected to the server
Interlocked.Decrement(ref m_numConnectedSockets);
m_maxNumberAcceptedClients.Release();
Console.WriteLine("A client has been disconnected from the server. There are {0} clients connected to the server", m_numConnectedSockets);

// Free the SocketAsyncEventArg so they can be reused by another client
m_readWritePool.Push(e);
}

}
}

异步socket大并发实现的更多相关文章

  1. python-gevent模块实现socket大并发

    服务器端:gevent_server.py 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...

  2. 处理大并发之五 使用libevent利器bufferevent

    转自:http://blog.csdn.net/feitianxuxue/article/details/9386843 处理大并发之五 使用libevent利器bufferevent 首先来翻译一段 ...

  3. 项目笔记---C#异步Socket示例

    概要 在C#领域或者说.net通信领域中有着众多的解决方案,WCF,HttpRequest,WebAPI,Remoting,socket等技术.这些技术都有着自己擅长的领域,或者被合并或者仍然应用于某 ...

  4. 可扩展多线程异步Socket服务器框架EMTASS 2.0 续

    转载自Csdn:http://blog.csdn.net/hulihui/article/details/3158613 (原创文章,转载请注明来源:http://blog.csdn.net/huli ...

  5. C# 实现的多线程异步Socket数据包接收器框架

    转载自Csdn : http://blog.csdn.net/jubao_liang/article/details/4005438 几天前在博问中看到一个C# Socket问题,就想到笔者2004年 ...

  6. C#异步Socket示例

    C#异步Socket示例 概要 在C#领域或者说.net通信领域中有着众多的解决方案,WCF,HttpRequest,WebAPI,Remoting,socket等技术.这些技术都有着自己擅长的领域, ...

  7. 可扩展多线程异步Socket服务器框架EMTASS 2.0

    0 前言 >>[前言].[第1节].[第2节].[第3节].[第4节].[第5节].[第6节] 在程序设计与实际应用中,Socket数据包接收服务器够得上一个经典问题了:需要计算机与网络编 ...

  8. 可扩展多线程异步Socket服务器框架EMTASS 2.0 (转自:http://blog.csdn.net/hulihui)

    可扩展多线程异步Socket服务器框架EMTASS 2.0 (转自:http://blog.csdn.net/hulihui) 0 前言 >>[前言].[第1节].[第2节].[第3节]. ...

  9. 转载:把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架构,微服务,以及相关的项目管理等等,这样你的核心竞争力才会越来越高

    https://developer.51cto.com/art/202001/608984.htm 把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架 ...

随机推荐

  1. Regularized Linear Regression with scikit-learn

    Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression ...

  2. Linux Weblogic 数据源 TimesTen配置

    [wzh@localhost middleware]$ vi wlserver_10.3/common/bin/commEnv.sh [Linux] LD_LIBRARY_PATH=${PATCH_L ...

  3. form 转json最佳示例

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. COJN 0483 800501求最大非空子矩阵

    800501求最大非空子矩阵 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩 ...

  5. 「Poetize10」封印一击

    描述 Description Nescafe由n种元素组成(编号为1~n), 第i种元素有一个封印区间[ai,bi].当封印力度E小于ai时,该元素将获得ai的封印能量:当封印力度E在ai到bi之间时 ...

  6. CSDN总结的面试中的十大可视化工具

    1. D3.js 基于JavaScript的数据可视化库,允许绑定任意数据到DOM,然后将数据驱动转换应用到Document中. 2. Data.js Data.js是一个JavaScript数据表示 ...

  7. python_Opencv_绘图

    opencv中也可以用一些函数来绘图 直接上源码,例子: # -*- coding: utf-8 -*- import numpy as np import cv2 # 黑色的图片 img=np.ze ...

  8. iOS--导航栏样式

    push返回按钮样式: UIBarButtonItem *item = [[UIBarButtonItem alloc] initWithTitle:@"" style:UIBar ...

  9. VB编写的验证码生成器

    验证码(CAPTCHA)是“Completely AutomatedPublicTuring test to tell Computers andHumansApart”(全自动区分计算机和人类的图灵 ...

  10. 程序中使用7-zip(7z)压缩文件

    Email:longsu2010 at yeah dot net 工作中难免遇到需要压缩文件的情况,比如有一千万个小文件,每个文件约100k,如果使用7-zip压缩后可能十几k,可以节省很多磁盘空间. ...