Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

Source

首先,我们可以这样思考,每个置换排列都有若干个循环结。e.g. 3 2 1 5 4 6的循环结就是(1,2,3)(4,5)(6),所以它所能变换的排列数为(lcm为最小公倍数)lcm(1,2,3)=6。而1+2+3=6。

所以我们只需要求出满足x1+x2+x3+x4+...xm=n,lcm(x1,x2,x3,...,xm)有多少种。

蒟蒻的我也只能YY到这里了,暴力枚举肯定没戏,剩下的是题解做的了,其实想想应该是能自己策清的。

首先我们令x1+x2+x3+...+xm<=n(如果少了我们可以补1嘛)。再令x1=p1^t1,x2=p2^t2...其中pi为质数且pi≠pj(i≠j),则lcm=∏xi,明显不重复。

然后,我们只需要证明若xi=pi*pj,也可以用lcm也包含在上面的情况。

不妨设pi<pj,则因为p是质数,明显有pi*pj>pi+pj,所以对于这种情况我们在pi,pj的情况中枚举了(少了仍然可以补1)。

因此,我们可以dp了,哈哈哈。

f[i][j]表示前i个质数,何为j的方案数(我们都是拆分成pi^ti的形式,刚刚已经证明了其不可能重复,也包含了所有方案)。转移自己脑补一下吧!!!

 #include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 1010
int n,tot,prime[maxn]; long long f[maxn][maxn],ans; bool exist[maxn]; inline void find()
{
for (int i = ;i <= n;++i)
if (!exist[i])
{
prime[++tot] = i;
for (int j = i*i;j <= n;j += i) exist[j] = true;
}
} inline void dp()
{
f[][] = ;
for (int i = ;i <= tot;++i)
{
for (int j = ;j <= n;++j) f[i][j] = f[i-][j];
for (int j = prime[i];j <= n;j *= prime[i])
{
for (int k = ;k + j <= n;++k)
f[i][k+j] += f[i-][k];
}
}
for (int i = ;i <= n;++i) ans += f[tot][i];
} int main()
{
freopen("1025.in","r",stdin);
freopen("1025.out","w",stdout);
scanf("%d",&n);
find();
dp();
printf("%lld",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1025 游戏的更多相关文章

  1. BZOJ 1025 游戏(分组背包)

    题目所谓的序列长度实际上就是各循环节的lcm+1. 所以题目等价于求出 一串数之和等于n,这串数的lcm种数. 由唯一分解定理可以联想到只要把每个素数的幂次放在一个分组里,然后对整体做一遍分组背包就行 ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. bzoj 5288 游戏

    bzoj 5288 游戏 显然从点 \(x\) 出发,能到达的点是包含 \(x\) 的一段区间.用 \(L,R\) 两个数组记录每个点对应的区间端点. 如果能预处理出 \(L,R\) ,询问显然可以 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  6. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  7. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  8. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  9. 【BZOJ 1025】[SCOI2009]游戏

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] [题解] 每一个对应关系,里面其实都会生成大小不一的几个环. 每一个环 ...

随机推荐

  1. IOS图标尺寸一览

    iPhone专用程序: 图标名称 大小 圆角 用途 必需 Icon.png 57 X 57 10px 用于程序商店和在iPhone/iPod Touch中显示 必需 Icon@2x.png 114 X ...

  2. android L新控件RecyclerView详解与DeMo[转]

    http://blog.csdn.net/codebob/article/details/37813801 在谷歌的官网我们可以看到它是这样介绍的: RecyclerView  is a more a ...

  3. 创建文档和自定义的qt assistant

    利用qt制作帮助文档 1.         创建文档即是一些html文件,这里可以使用qt提供的工具像是qdoc 和Doxygen生成帮助的html文档. 2.         组织文档结构用于qt ...

  4. 通过MultipleOutputs写到多个文件

    MultipleOutputs 类可以将数据写到多个文件,这些文件的名称源于输出的键和值或者任意字符串.这允许每个 reducer(或者只有 map 作业的 mapper)创建多个文件. 采用name ...

  5. iOS NavigaitonController详解(code版)

    参考文章:http://blog.csdn.net/totogo2010/article/details/7681879,参考了这篇文章,写的超级好,自己他的基础上加上了自己的理解. 下面的图显示了导 ...

  6. 关于C++的疑问剖析

    1)众所周知,抽象类是不存在对象的,只提供接口而不提供实现.但是抽象类能不能作为一个类指针,指向其子类的对象呢? class Interface { public: ; }; class Implem ...

  7. java格式处理工具类

    import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOExceptio ...

  8. Arcgis 9.3升级Arcgis10.1需要注重的一点

    在项目启动时绑定一个证书文件: 在 Global.asax里面添加 void Application_Start(object sender, EventArgs e) { // Code that ...

  9. ^(bitwise exclusive Or).

    一个数,进行异或同一个数两次,将得到原来的数,例如: 6 ^ 4 ^ 4 = 6; 0000-0000-0000-0110 ^ 0000-0000-0000-0100 ---------------- ...

  10. OC - 25.CAKeyframeAnimation

    概述 简介 CAKeyframeAnimation又称关键帧动画 CAKeyframeAnimation是抽象类CAPropertyAnimation的子类,可以直接使用 通过values与path两 ...