You may refer to the main idea of MST in graph theory.

http://en.wikipedia.org/wiki/Minimum_spanning_tree

Here is my own interpretation

What is Minimum Spanning Tree?

Given a connected and undirected graph, a spanning tree of that graph is a subgraph that is a tree and connects all the vertices together. A single graph can have many different spanning trees. A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and undirected graph is a spanning tree with weight less than or equal to the weight of every other spanning tree. The weight of a spanning tree is the sum of weights given to each edge of the spanning tree.


How many edges does a minimum spanning tree has?

A minimum spanning tree has (V – 1) edges where V is the number of vertices in the given graph.

Founding MST using Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Analise

The algorithm is a Greedy Algorithm. The Greedy Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far. Let us understand it with an example: Consider the below input graph.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8 edges.

After sorting:
Weight Src Dest
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5
Now pick all edges one by one from sorted list of edges

1.
 
Pick edge 7-6:
 No cycle is formed, include it.


2. Pick edge 8-2: No cycle is formed, include it.

3.
 
Pick edge 6-5:
 No cycle is formed, include it.


4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the algorithm stops here.

Here is the source code demonstrating the procedure.

#include <stdio.h>
#include <stdlib.h>
#include <string.h> // a structure to represent a weighted edge in graph
struct Edge
{
int src, dest, weight;
}; // a structure to represent a connected, undirected and weighted graph
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E; // graph is represented as an array of edges. Since the graph is
// undirected, the edge from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
struct Edge* edge;
}; // Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
graph->V = V;
graph->E = E; graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) ); return graph;
} // A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
}; // A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent;
} // A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y); // Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot; // If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
} // Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
} // The main function to construct MST using Kruskal's algorithm
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges // Step 1: Sort all the edges in non-decreasing order of their weight
// If we are not allowed to change the given graph, we can create a copy of
// array of edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); // Allocate memory for creating V ssubsets
struct subset *subsets =
(struct subset*) malloc( V * sizeof(struct subset) ); // Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
} // Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest); // If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
} // print the contents of result[] to display the built MST
printf("Following are the edges in the constructed MST\n");
for (i = 0; i < e; ++i)
printf("%d -- %d == %d\n", result[i].src, result[i].dest,
result[i].weight);
return;
} // Driver program to test above functions
int main()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
struct Graph* graph = createGraph(V, E); // add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10; // add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6; // add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5; // add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15; // add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4; KruskalMST(graph); return 0;
}

MST(Kruskal’s Minimum Spanning Tree Algorithm)的更多相关文章

  1. Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  2. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  3. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  4. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  5. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  7. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. gem install 出现Errno::ECONNRESET: Connection reset by peer - SSL_connect (https://ruby.taobao.org

    这几天在ubuntu14.04.1 64位上安装rails的时候,由于大天朝的原因,更换了淘宝源,然后执行 gem install rails 这个时候,总是会提示 Errno::ECONNRESET ...

  2. 无线端web开发学习总结

    无线web开发之前要做一些准备工作:一.必需的reset样式库1.其中的重点是盒模型box-sizing:由原来pc端的content-box改为border-box. *, *:before, *: ...

  3. 配置nginx1.7.8支持pathinfo模式

    vi nginx/conf/nginx.conf 1.修改正则 set $real_script_name $fastcgi_script_name; if ($fastcgi_script_name ...

  4. 从一个标准 url 里取出文件的扩展名

    在php预定义函数中有一个叫做"pathinfo()"的函数,专门用于返回文件路径信息的. 那好,我们就来看一下它能为我们做些什么?       语法:pathinfo($url_ ...

  5. Linux 多用户和多用户边界

    1. 需求背景 2. 多用户的边界: 独立的工作目录 3. 多用户的边界:可操作/访问的资源 4. 多用户的边界: 可执行的操作 5. 多用户的特性标识: UID和GID -------------- ...

  6. 初级SQL开发汇总指南

    汇总部分内容来自网络(作者  :zhtbs),比较基础的东西,能够了解比较基础的一些东西. Select语句概要 数据库中数据的提取(查询)使用select 语法,主要有以下几点作用 l  提取的数据 ...

  7. DexIndexOverflowException: Cannot merge new index 66080 into a non-jumbo instruction!

    问题 该问题是方法数超过了65536(DEX 64K problem),无法编译成单个dex文件. 解决方案 谷歌官方给出的解决方案 android { compileSdkVersion 21 bu ...

  8. WebApi学习总结系列第五篇(消息处理管道)

    引言: ASP.NET WebAPI的核心框架是一个消息处理管道,这个管道是一组HttpMessageHandler的有序组合.这是一个双工管道,请求消息从一端流入并依次经过所有HttpMessage ...

  9. 异步请求HTTP

    代码: @interface HttpProcessor : NSObject <NSURLConnectionDataDelegate> { NSMutableData *buffer; ...

  10. em(倍)与px的区别(转载)

    在国内网站中,包括三大门户,以及"引领"中国网站设计潮流的蓝色理想,ChinaUI等都是使用了px作为字体单位.只有百度好歹做了个可调的表率.而 在大洋彼岸,几乎所有的主流站点都使 ...