参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创

视频教程: http://pan.baidu.com/s/1kVNe5EJ

 
0. 机器学习中分类和预测算法的评估:
 
  • 准确率
  • 速度
  • 强壮行
  • 可规模性
  • 可解释性
 
 
 

1. 什么是决策树/判定树(decision tree)?

     
     判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。
 
 

 
 
2.  机器学习中分类方法中的一个重要算法
 
3.  构造决策树的基本算法                   
 
 

 

 
     3.1 熵(entropy)概念:
 
          信息和抽象,如何度量?
          1948年,香农提出了 ”信息熵(entropy)“的概念
          一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者          
          是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少
          
          例子:猜世界杯冠军,假如一无所知,猜多少次?
          每个队夺冠的几率不是相等的
          
          比特(bit)来衡量信息的多少
 

          
 
          
 
          变量的不确定性越大,熵也就越大
          
 
     3.1 决策树归纳算法 (ID3)
 
          1970-1980, J.Ross. Quinlan, ID3算法
     
          选择属性判断结点
 
          信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)
          通过A来作为节点分类获取了多少信息
 
                
         

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048

 
          所以,选择age作为第一个根节点
 

 
 
          重复。。。
 
 
          算法:
  • 树以代表训练样本的单个结点开始(步骤1)。
  • 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  • 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  • 所有的属性都是分类的,即离散值。连续属性必须离散化。
  • 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  • 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  • 递归划分步骤仅当下列条件之一成立停止:
  • (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  • (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  • 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
  • 点样本的类分布。
  • (c) 分枝
  • test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  • 创建一个树叶(步骤12)
 
               
 
 
     3.1 其他算法:
               C4.5:  Quinlan
               Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
               共同点:都是贪心算法,自上而下(Top-down approach)
               区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
 
     3.2 如何处理连续性变量的属性? 
 
4. 树剪枝叶 (避免overfitting)
     4.1 先剪枝
     4.2 后剪枝
 
 
5. 决策树的优点:
     直观,便于理解,小规模数据集有效     
 
6. 决策树的缺点:
     处理连续变量不好
     类别较多时,错误增加的比较快
     可规模性一般(
     

3.1决策树理论--python深度机器学习的更多相关文章

  1. 1.1机器学习基础-python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 1. 课程介绍 2. 机器学习 (Machine Learning, ...

  2. 2基本概念--python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分 ...

  3. 1.2机器学习基础下--python深度机器学习

    1. 机器学习更多应用举例: 人脸识别   2. 机器学习就业需求:      LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才      http://blog.linked ...

  4. 用Python开始机器学习(2:决策树分类算法)

    http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树 ...

  5. 监督学习——决策树理论与实践(下):回归决策树(CART)

    介绍 决策树分为分类决策树和回归决策树: 上一篇介绍了分类决策树以及Python实现分类决策树: 监督学习——决策树理论与实践(上):分类决策树          决策树是一种依托决策而建立起来的一种 ...

  6. Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn

    Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...

  7. Python深度学习读书笔记-1.什么是深度学习

    人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?

  8. [resource]23个python的机器学习包

    23个python的机器学习包,从常见的scikit-learn, pylearn2,经典的matlab替代orange, 到最新最酷的Theano(深度学习)和torch 7 (well,其实lua ...

  9. Python相关机器学习‘武器库’

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

随机推荐

  1. Django中的Model(表结构)

    Model(表设计) 在这里只提经常用到的三种联表结构: 一对多:models.ForeignKey(其他表) 多对多:models.ManyToManyField(其他表) 一对一:models.O ...

  2. 用java写随机出题

    import java.io.*; //输入函数包 public class hello{ public static void main(String args[]){ String s=" ...

  3. android 加载图片防止内存溢出

    图片资源: private int fore[]; private int back[]; fore = new int[]{R.drawable.a0, R.drawable.a1, R.drawa ...

  4. [置顶] Java Web开发教程来袭

    Java Web,是用Java技术来解决相关web互联网领域的技术总和.web包括:web服务器和web客户端两部分.Java在客户端的应用有java applet不过现在使用的很少,Java在服务器 ...

  5. Android 颜色渲染(二) 颜色区域划分原理与实现思路

    版权声明:本文为博主原创文章,未经博主允许不得转载. 上一篇讲到颜色选择器,该demo不能选择黑白或者具体区间颜色,这是为什么呢,还是要从原理部分讲起,首先看一下两张图:            图1 ...

  6. android ui定义自己的dialog(项目框架搭建时就写好,之后事半功倍)

    自定义一个dialog: 之前有很多博客都有过这方面的介绍,可是个人觉得通常不是很全面,通用性不是很强,一般会定义一个自己的dialog类,然后去使用,难道每一个dialog都要定义一个class吗? ...

  7. 《Java并发编程实战》第六章 任务运行 读书笔记

    一. 在线程中运行任务 无限制创建线程的不足 .线程生命周期的开销很高 .资源消耗 .稳定性 二.Executor框架 Executor基于生产者-消费者模式.提交任务的操作相当于生产者.运行任务的线 ...

  8. ios--绘图介绍

    iOS–绘图介绍 绘制图像的三种方式 一. 子类化UIView,在drawRect:方法画图 执行方法时,系统会自行创建画布(CGContext),并且讲画布推到堆栈的栈顶位置 执行完毕后,系统会执行 ...

  9. [转]Flex 布局教程:语法篇

    网页布局(layout)是CSS的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖 display属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如,垂直居中 ...

  10. iOS viewController 和 view 的创建消失生命周期总结

    控制器创建的生命周期 1. 如果从stroryBoard 中产生一个controller,那么会先调用initWithCoder:, awakeFromNib, loadView,viewDidLoa ...