参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创

视频教程: http://pan.baidu.com/s/1kVNe5EJ

 
0. 机器学习中分类和预测算法的评估:
 
  • 准确率
  • 速度
  • 强壮行
  • 可规模性
  • 可解释性
 
 
 

1. 什么是决策树/判定树(decision tree)?

     
     判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。
 
 

 
 
2.  机器学习中分类方法中的一个重要算法
 
3.  构造决策树的基本算法                   
 
 

 

 
     3.1 熵(entropy)概念:
 
          信息和抽象,如何度量?
          1948年,香农提出了 ”信息熵(entropy)“的概念
          一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者          
          是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少
          
          例子:猜世界杯冠军,假如一无所知,猜多少次?
          每个队夺冠的几率不是相等的
          
          比特(bit)来衡量信息的多少
 

          
 
          
 
          变量的不确定性越大,熵也就越大
          
 
     3.1 决策树归纳算法 (ID3)
 
          1970-1980, J.Ross. Quinlan, ID3算法
     
          选择属性判断结点
 
          信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)
          通过A来作为节点分类获取了多少信息
 
                
         

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048

 
          所以,选择age作为第一个根节点
 

 
 
          重复。。。
 
 
          算法:
  • 树以代表训练样本的单个结点开始(步骤1)。
  • 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  • 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  • 所有的属性都是分类的,即离散值。连续属性必须离散化。
  • 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  • 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  • 递归划分步骤仅当下列条件之一成立停止:
  • (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  • (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  • 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
  • 点样本的类分布。
  • (c) 分枝
  • test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  • 创建一个树叶(步骤12)
 
               
 
 
     3.1 其他算法:
               C4.5:  Quinlan
               Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
               共同点:都是贪心算法,自上而下(Top-down approach)
               区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
 
     3.2 如何处理连续性变量的属性? 
 
4. 树剪枝叶 (避免overfitting)
     4.1 先剪枝
     4.2 后剪枝
 
 
5. 决策树的优点:
     直观,便于理解,小规模数据集有效     
 
6. 决策树的缺点:
     处理连续变量不好
     类别较多时,错误增加的比较快
     可规模性一般(
     

3.1决策树理论--python深度机器学习的更多相关文章

  1. 1.1机器学习基础-python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 1. 课程介绍 2. 机器学习 (Machine Learning, ...

  2. 2基本概念--python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分 ...

  3. 1.2机器学习基础下--python深度机器学习

    1. 机器学习更多应用举例: 人脸识别   2. 机器学习就业需求:      LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才      http://blog.linked ...

  4. 用Python开始机器学习(2:决策树分类算法)

    http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树 ...

  5. 监督学习——决策树理论与实践(下):回归决策树(CART)

    介绍 决策树分为分类决策树和回归决策树: 上一篇介绍了分类决策树以及Python实现分类决策树: 监督学习——决策树理论与实践(上):分类决策树          决策树是一种依托决策而建立起来的一种 ...

  6. Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn

    Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...

  7. Python深度学习读书笔记-1.什么是深度学习

    人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?

  8. [resource]23个python的机器学习包

    23个python的机器学习包,从常见的scikit-learn, pylearn2,经典的matlab替代orange, 到最新最酷的Theano(深度学习)和torch 7 (well,其实lua ...

  9. Python相关机器学习‘武器库’

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

随机推荐

  1. Telecasting station - SGU 114(带劝中位数)

    题目大意:在一个数轴上有N个点,每个点都有一个权值,在这个数轴上找一个点,是的每个点到这个点的距离之和乘上权值的总和最小. 分析:以前也遇到过类似的问题,不过并不知道这是带权值的中位数问题,百度百科有 ...

  2. rnqoj-82-又上锁妖塔-dp

    又是一个敢想就敢做的题目... 同时记录更新两个状态 dp[i] :第i层是飞上去的 df[i]  :第i层是走上去的 dp[i]=min(df[i-1],df[i-2]); df[i]=min(dp ...

  3. BJUI 转

    B-JUI 前端框架B-JUI(Bootstrap for DWZ)是一个富客户端框架,基于DWZ-jUI富客户端框架修改. 本文是B-JUI中文使用手册,包括使用示例代码,感兴趣的同学参考下. 概览 ...

  4. UVa12063 Zeros and Ones

    神坑 1竟然还要取模 在后面填数多好的 #include<cstdio> #include<cstring> #include<cstdlib> #include& ...

  5. c#基础语言编程-Path和Directory

    引言 在程序常会对文件操作,在对文件操作中需要对文件路径的进行定位,在.Net中针对寻找文件提供两个静态类以供调用,Path和Directory. Path类 来自命名空间SYstem.IO,Path ...

  6. 单元测试时候使用[ClassInitialize]会该方法必须是静态的公共方法,不返回值并且应采用一个TestContext类型的参数报错的解决办法

    using Microsoft.VisualStudio.TestTools.UnitTesting; 如果该DLL应用的是 C:\Program Files\Microsoft Visual Stu ...

  7. JVM类载入过程及主动引用与被动引用

    了解类载入全过程,有助于了解JVM执行过程,以及更深入了解java动态性(解热部署,动态载入),提高程序灵活性. 类载入全过程: JVM将class文件字节码文件载入到内存中.并对数据进行校验解析和初 ...

  8. 第三篇:GPU 并行编程的运算架构

    前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别? 本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流 ...

  9. JAVA异常的捕获与抛出原则

    在可能会出现exception的地方,要使用try-catch或者throws或者两者都要.我的判断依据是:如果对可能出现的exception不想被外部(方法的调用者)知道,就在方法内部try-cat ...

  10. SQL Server 2008 安装指南

    一.安装需求: 1.硬件需求条件 硬件 需求 处理器 最低:1.4 GHz(x64处理器)注意:Windows Server 2008 for Itanium-Based Systems 版本需要In ...