既求从点(0,0)仅仅能向上或者向右而且不穿越y=x到达点(a,b)有多少总走法...

有公式: C(a+b,min(a,b))-C(a+b,min(a,b)-1)  ///

折纸法证明卡特兰数: http://blog.sina.com.cn/s/blog_6917f47301010cno.html

Brackets

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 506    Accepted Submission(s): 120

Problem Description
We give the following inductive definition of a “regular brackets” sequence:

● the empty sequence is a regular brackets sequence,

● if s is a regular brackets sequence, then (s) are regular brackets sequences, and

● if a and b are regular brackets sequences, then ab is a regular brackets sequence.

● no other sequence is a regular brackets sequence



For instance, all of the following character sequences are regular brackets sequences:

(), (()), ()(), ()(())

while the following character sequences are not:

(, ), )(, ((), ((()



Now we want to construct a regular brackets sequence of length n,
how many regular brackets sequences we can get when the front several brackets are given already.
 
Input
Multi test cases (about 2000),
every case occupies two lines.

The first line contains an integer n.

Then second line contains a string str which indicates the front several brackets.



Please process to the end of file.



[Technical Specification]

1≤n≤1000000

str contains only '(' and ')' and length of str is larger than 0 and no more than n.
 
Output
For each case。output answer % 1000000007 in
a single line.
 
Sample Input
4
()
4
(
6
()
 
Sample Output
1
2
2
Hint
For the first case the only regular sequence is ()().
For the second case regular sequences are (()) and ()().
For the third case regular sequences are ()()() and ()(()).
 

/* ***********************************************
Author :CKboss
Created Time :2015年03月18日 星期三 20时10分21秒
File Name :HDOJ5184.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; typedef long long int LL; const int maxn=1001000;
const LL mod=1000000007LL; int n,len;
char str[maxn]; LL inv[maxn];
LL jc[maxn],jcv[maxn]; void init()
{
inv[1]=1; jc[0]=1; jcv[0]=1;
jc[1]=1; jcv[1]=1; for(int i=2;i<maxn;i++)
{
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
jc[i]=(jc[i-1]*i)%mod;
jcv[i]=(jcv[i-1]*inv[i])%mod;
}
} LL COMB(LL n,LL m)
{
if(m<0||m>n) return 0LL;
if(m==0||m==n) return 1LL;
LL ret=((jc[n]*jcv[n-m])%mod*jcv[m])%mod;
return ret;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); init();
while(scanf("%d",&n)!=EOF)
{
scanf("%s",str);
len=strlen(str); bool flag=true;
if(n%2==1) flag=false;
int left=0,right=0;
for(int i=0;i<len&&flag;i++)
{
if(str[i]=='(') left++;
else if(str[i]==')') right++;
if(left>=right) continue;
else flag=false;
}
if(flag==false) { puts("0"); continue; } int a=n/2-left; /// remain left
int b=n/2-right; /// remain right if(b>a) swap(a,b);
LL ans = (COMB(a+b,b)-COMB(a+b,b-1)+mod)%mod;
cout<<ans<<endl;
} return 0;
}

HDOJ 5184 Brackets 卡特兰数扩展的更多相关文章

  1. hdu 5184(数学-卡特兰数)

    Brackets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  2. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

  3. hdu 5184 类卡特兰数+逆元

    BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...

  4. HDUOJ---1133(卡特兰数扩展)Buy the Ticket

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  5. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  8. HDOJ 1023 Train Problem II 卡特兰数

    火车进站出站的问题满足卡特兰数...卡特兰数的相关知识如下: 卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. ...

  9. hdoj 4828 卡特兰数取模

    Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Sub ...

随机推荐

  1. Template 模式

    Template 模式是很简单模式,但是也应用很广的模式.Template 是采用继承的方式实现算法的异构,其关键点就是将通用算法封装在抽象基类中,并将不同的算法细节放到子类中实现.Template ...

  2. 自定义Excel导出简易组件

    1.组件原理 excel的数据存储是以xml格式存储的,所以导出Excel文件可以通过生成XML来实现.当然XML必须符合一定的格式要求. 2.组件实现 (1)新建类库文件“MyExcel” (2)添 ...

  3. Bootstrap_表单_表单控件

    一.输入框input 单行输入框,常见的文本输入框,也就是input的type属性值为text. 在Bootstrap中使用input时也必须添加type类型,如果没有指定type类型,将无法得到正确 ...

  4. yii2源码学习笔记(三)

    组件(component),是Yii框架的基类,实现了属性.事件.行为三类功能,如果需要事件和行为的功能,需要继承该类. yii\base\Component代码详解 <?php /** * @ ...

  5. rel=nofollow 是什么意思

    nofollow是什么意思? nofollow是html标签的一个属性值,Google推荐使用nofollow,告诉机器(爬虫)无需追踪目标页,是指禁止蜘蛛爬行和传递权重,但是如果你是通过sitema ...

  6. shell脚本获取mysql插入数据自增长id的值

    shell脚本获取mysql插入数据自增长id的值 在shell脚本中我们可以通过last_insert_id()获取id值,但是,需要注意的是,该函数必须在执行插入操作的sql语句之后,立即调用,否 ...

  7. Connect mysql on Linux from Windows

    ON LINUX: 1 sudo apt-get install mysql-server 2 sudo apt-get install python-dev 3 sudo apt-get insta ...

  8. C# asp:Repeater DataSource List<T>

    1. asp:Repeater 数据源为List<T> 2.页面显示 3.行绑定取值

  9. 小A项目为什么加班

    1.负责架构搭建的人搭建完成架构后,没有进行落地性验证:导致真正要用到的时候才发现spring没有配置:需要对架构人员的进度和内容进行跟踪,在跟踪进度的时候需要强调落地性: 2.负责架构搭建的人没有提 ...

  10. iOS 多线程详解

    iOS开发 多线程 概览 机器码是按顺序执行的,一个复杂的多步操作只能一步步按顺序逐个执行.改变这种状况可以从两个角度出发: 对于单核处理器,可以将多个步骤放到不同的线程,这样一来用户完成UI操作后其 ...