几乎没用过linux操作系统,不懂shell编程,linux下shell+windows下UltraEdit勉勉强强生成了train.txt和val.txt期间各种错误辛酸不表,照着examples/imagenet/readme勉勉强强用自己的数据,按imagenet的训练方法,把reference_caffenet训起来了,小笔记本的风扇又开始呼呼呼的转了。

跑了一晚上,小笔记本憋了,还是报错(syncedmem.hpp:25 check failed:*ptr host allocation of size 191102976 failed)猜测还是内存不够的问题,相同的配置方式在台式机上能跑,早晨过来迭代到800次了:

 I1101 05:51:24.763746  2942 solver.cpp:243] Iteration 698, loss = 0.246704
I1101 05:51:24.763829 2942 solver.cpp:259] Train net output #0: loss = 0.246704 (* 1 = 0.246704 loss)
I1101 05:51:24.763837 2942 sgd_solver.cpp:138] Iteration 698, lr = 0.01
I1101 05:52:20.169235 2942 solver.cpp:243] Iteration 699, loss = 0.214295
I1101 05:52:20.169353 2942 solver.cpp:259] Train net output #0: loss = 0.214295 (* 1 = 0.214295 loss)
I1101 05:52:20.169360 2942 sgd_solver.cpp:138] Iteration 699, lr = 0.01
I1101 05:53:15.372921 2942 solver.cpp:243] Iteration 700, loss = 0.247836
I1101 05:53:15.373028 2942 solver.cpp:259] Train net output #0: loss = 0.247836 (* 1 = 0.247836 loss)
I1101 05:53:15.373049 2942 sgd_solver.cpp:138] Iteration 700, lr = 0.01
I1101 05:54:11.039271 2942 solver.cpp:243] Iteration 701, loss = 0.24083
I1101 05:54:11.039353 2942 solver.cpp:259] Train net output #0: loss = 0.24083 (* 1 = 0.24083 loss)
I1101 05:54:11.039361 2942 sgd_solver.cpp:138] Iteration 701, lr = 0.01
I1101 05:55:06.733603 2942 solver.cpp:243] Iteration 702, loss = 0.185371
I1101 05:55:06.733696 2942 solver.cpp:259] Train net output #0: loss = 0.185371 (* 1 = 0.185371 loss)
I1101 05:55:06.733716 2942 sgd_solver.cpp:138] Iteration 702, lr = 0.01
I1101 05:56:02.576714 2942 solver.cpp:243] Iteration 703, loss = 0.154825
I1101 05:56:02.576802 2942 solver.cpp:259] Train net output #0: loss = 0.154825 (* 1 = 0.154825 loss)
I1101 05:56:02.576810 2942 sgd_solver.cpp:138] Iteration 703, lr = 0.01
I1101 05:56:58.484149 2942 solver.cpp:243] Iteration 704, loss = 0.222496
I1101 05:56:58.484272 2942 solver.cpp:259] Train net output #0: loss = 0.222496 (* 1 = 0.222496 loss)
I1101 05:56:58.484292 2942 sgd_solver.cpp:138] Iteration 704, lr = 0.01
I1101 05:57:53.968674 2942 solver.cpp:243] Iteration 705, loss = 0.223804
I1101 05:57:53.968770 2942 solver.cpp:259] Train net output #0: loss = 0.223804 (* 1 = 0.223804 loss)
I1101 05:57:53.968789 2942 sgd_solver.cpp:138] Iteration 705, lr = 0.01
I1101 05:58:49.514394 2942 solver.cpp:243] Iteration 706, loss = 0.178994
I1101 05:58:49.514477 2942 solver.cpp:259] Train net output #0: loss = 0.178994 (* 1 = 0.178994 loss)
I1101 05:58:49.514482 2942 sgd_solver.cpp:138] Iteration 706, lr = 0.01
I1101 05:59:44.914528 2942 solver.cpp:243] Iteration 707, loss = 0.231146
I1101 05:59:44.914618 2942 solver.cpp:259] Train net output #0: loss = 0.231146 (* 1 = 0.231146 loss)
I1101 05:59:44.914625 2942 sgd_solver.cpp:138] Iteration 707, lr = 0.01
I1101 06:00:40.380048 2942 solver.cpp:243] Iteration 708, loss = 0.2585
I1101 06:00:40.380169 2942 solver.cpp:259] Train net output #0: loss = 0.2585 (* 1 = 0.2585 loss)
I1101 06:00:40.380188 2942 sgd_solver.cpp:138] Iteration 708, lr = 0.01
I1101 06:01:35.776782 2942 solver.cpp:243] Iteration 709, loss = 0.213343
I1101 06:01:35.776881 2942 solver.cpp:259] Train net output #0: loss = 0.213343 (* 1 = 0.213343 loss)
I1101 06:01:35.776888 2942 sgd_solver.cpp:138] Iteration 709, lr = 0.01
I1101 06:02:31.642572 2942 solver.cpp:243] Iteration 710, loss = 0.209495
I1101 06:02:31.642648 2942 solver.cpp:259] Train net output #0: loss = 0.209495 (* 1 = 0.209495 loss)
I1101 06:02:31.642654 2942 sgd_solver.cpp:138] Iteration 710, lr = 0.01
I1101 06:03:27.265415 2942 solver.cpp:243] Iteration 711, loss = 0.222363
I1101 06:03:27.265513 2942 solver.cpp:259] Train net output #0: loss = 0.222363 (* 1 = 0.222363 loss)
I1101 06:03:27.265522 2942 sgd_solver.cpp:138] Iteration 711, lr = 0.01
I1101 06:04:22.963587 2942 solver.cpp:243] Iteration 712, loss = 0.156492
I1101 06:04:22.963680 2942 solver.cpp:259] Train net output #0: loss = 0.156492 (* 1 = 0.156492 loss)
I1101 06:04:22.963701 2942 sgd_solver.cpp:138] Iteration 712, lr = 0.01
I1101 06:05:18.575387 2942 solver.cpp:243] Iteration 713, loss = 0.23963
I1101 06:05:18.575475 2942 solver.cpp:259] Train net output #0: loss = 0.23963 (* 1 = 0.23963 loss)
I1101 06:05:18.575484 2942 sgd_solver.cpp:138] Iteration 713, lr = 0.01
I1101 06:06:13.736877 2942 solver.cpp:243] Iteration 714, loss = 0.198127
I1101 06:06:13.736976 2942 solver.cpp:259] Train net output #0: loss = 0.198127 (* 1 = 0.198127 loss)
I1101 06:06:13.736984 2942 sgd_solver.cpp:138] Iteration 714, lr = 0.01
I1101 06:07:09.226873 2942 solver.cpp:243] Iteration 715, loss = 0.211781
I1101 06:07:09.226959 2942 solver.cpp:259] Train net output #0: loss = 0.211781 (* 1 = 0.211781 loss)
I1101 06:07:09.226966 2942 sgd_solver.cpp:138] Iteration 715, lr = 0.01
I1101 06:08:04.730242 2942 solver.cpp:243] Iteration 716, loss = 0.250581
I1101 06:08:04.730329 2942 solver.cpp:259] Train net output #0: loss = 0.250581 (* 1 = 0.250581 loss)
I1101 06:08:04.730335 2942 sgd_solver.cpp:138] Iteration 716, lr = 0.01
I1101 06:09:00.274008 2942 solver.cpp:243] Iteration 717, loss = 0.213366
I1101 06:09:00.274089 2942 solver.cpp:259] Train net output #0: loss = 0.213366 (* 1 = 0.213366 loss)
I1101 06:09:00.274096 2942 sgd_solver.cpp:138] Iteration 717, lr = 0.01
I1101 06:09:55.551977 2942 solver.cpp:243] Iteration 718, loss = 0.229803
I1101 06:09:55.552062 2942 solver.cpp:259] Train net output #0: loss = 0.229803 (* 1 = 0.229803 loss)
I1101 06:09:55.552070 2942 sgd_solver.cpp:138] Iteration 718, lr = 0.01
I1101 06:10:51.295166 2942 solver.cpp:243] Iteration 719, loss = 0.182805
I1101 06:10:51.295260 2942 solver.cpp:259] Train net output #0: loss = 0.182805 (* 1 = 0.182805 loss)
I1101 06:10:51.295281 2942 sgd_solver.cpp:138] Iteration 719, lr = 0.01
I1101 06:11:46.892568 2942 solver.cpp:243] Iteration 720, loss = 0.174111
I1101 06:11:46.892639 2942 solver.cpp:259] Train net output #0: loss = 0.174111 (* 1 = 0.174111 loss)
I1101 06:11:46.892647 2942 sgd_solver.cpp:138] Iteration 720, lr = 0.01
I1101 06:12:42.373394 2942 solver.cpp:243] Iteration 721, loss = 0.159915
I1101 06:12:42.373476 2942 solver.cpp:259] Train net output #0: loss = 0.159915 (* 1 = 0.159915 loss)
I1101 06:12:42.373482 2942 sgd_solver.cpp:138] Iteration 721, lr = 0.01
I1101 06:13:37.606986 2942 solver.cpp:243] Iteration 722, loss = 0.194667
I1101 06:13:37.607105 2942 solver.cpp:259] Train net output #0: loss = 0.194667 (* 1 = 0.194667 loss)
I1101 06:13:37.607125 2942 sgd_solver.cpp:138] Iteration 722, lr = 0.01
I1101 06:14:32.550334 2942 solver.cpp:243] Iteration 723, loss = 0.192629
I1101 06:14:32.550433 2942 solver.cpp:259] Train net output #0: loss = 0.192629 (* 1 = 0.192629 loss)
I1101 06:14:32.550442 2942 sgd_solver.cpp:138] Iteration 723, lr = 0.01
I1101 06:15:27.603406 2942 solver.cpp:243] Iteration 724, loss = 0.189146
I1101 06:15:27.603489 2942 solver.cpp:259] Train net output #0: loss = 0.189146 (* 1 = 0.189146 loss)
I1101 06:15:27.603497 2942 sgd_solver.cpp:138] Iteration 724, lr = 0.01
I1101 06:16:22.925781 2942 solver.cpp:243] Iteration 725, loss = 0.2837
I1101 06:16:22.925882 2942 solver.cpp:259] Train net output #0: loss = 0.2837 (* 1 = 0.2837 loss)
I1101 06:16:22.925902 2942 sgd_solver.cpp:138] Iteration 725, lr = 0.01
I1101 06:17:18.304738 2942 solver.cpp:243] Iteration 726, loss = 0.22247
I1101 06:17:18.304850 2942 solver.cpp:259] Train net output #0: loss = 0.22247 (* 1 = 0.22247 loss)
I1101 06:17:18.304870 2942 sgd_solver.cpp:138] Iteration 726, lr = 0.01
I1101 06:18:13.775182 2942 solver.cpp:243] Iteration 727, loss = 0.22343
I1101 06:18:13.775266 2942 solver.cpp:259] Train net output #0: loss = 0.22343 (* 1 = 0.22343 loss)
I1101 06:18:13.775274 2942 sgd_solver.cpp:138] Iteration 727, lr = 0.01
I1101 06:19:09.986521 2942 solver.cpp:243] Iteration 728, loss = 0.208602
I1101 06:19:09.986620 2942 solver.cpp:259] Train net output #0: loss = 0.208602 (* 1 = 0.208602 loss)
I1101 06:19:09.986629 2942 sgd_solver.cpp:138] Iteration 728, lr = 0.01
I1101 06:20:05.922881 2942 solver.cpp:243] Iteration 729, loss = 0.179899
I1101 06:20:05.922969 2942 solver.cpp:259] Train net output #0: loss = 0.179899 (* 1 = 0.179899 loss)
I1101 06:20:05.922976 2942 sgd_solver.cpp:138] Iteration 729, lr = 0.01
I1101 06:21:01.568653 2942 solver.cpp:243] Iteration 730, loss = 0.25694
I1101 06:21:01.568696 2942 solver.cpp:259] Train net output #0: loss = 0.25694 (* 1 = 0.25694 loss)
I1101 06:21:01.568701 2942 sgd_solver.cpp:138] Iteration 730, lr = 0.01
I1101 06:21:57.061185 2942 solver.cpp:243] Iteration 731, loss = 0.184521
I1101 06:21:57.061267 2942 solver.cpp:259] Train net output #0: loss = 0.184521 (* 1 = 0.184521 loss)
I1101 06:21:57.061275 2942 sgd_solver.cpp:138] Iteration 731, lr = 0.01
I1101 06:22:52.319211 2942 solver.cpp:243] Iteration 732, loss = 0.214978
I1101 06:22:52.319324 2942 solver.cpp:259] Train net output #0: loss = 0.214978 (* 1 = 0.214978 loss)
I1101 06:22:52.319332 2942 sgd_solver.cpp:138] Iteration 732, lr = 0.01
I1101 06:23:47.861532 2942 solver.cpp:243] Iteration 733, loss = 0.166787
I1101 06:23:47.861619 2942 solver.cpp:259] Train net output #0: loss = 0.166787 (* 1 = 0.166787 loss)
I1101 06:23:47.861626 2942 sgd_solver.cpp:138] Iteration 733, lr = 0.01
I1101 06:24:43.277447 2942 solver.cpp:243] Iteration 734, loss = 0.245544
I1101 06:24:43.277559 2942 solver.cpp:259] Train net output #0: loss = 0.245544 (* 1 = 0.245544 loss)
I1101 06:24:43.277565 2942 sgd_solver.cpp:138] Iteration 734, lr = 0.01
I1101 06:25:38.757647 2942 solver.cpp:243] Iteration 735, loss = 0.200957
I1101 06:25:38.757745 2942 solver.cpp:259] Train net output #0: loss = 0.200957 (* 1 = 0.200957 loss)
I1101 06:25:38.757766 2942 sgd_solver.cpp:138] Iteration 735, lr = 0.01
I1101 06:26:34.590348 2942 solver.cpp:243] Iteration 736, loss = 0.206711
I1101 06:26:34.590428 2942 solver.cpp:259] Train net output #0: loss = 0.206711 (* 1 = 0.206711 loss)
I1101 06:26:34.590435 2942 sgd_solver.cpp:138] Iteration 736, lr = 0.01
I1101 06:27:30.571000 2942 solver.cpp:243] Iteration 737, loss = 0.190287
I1101 06:27:30.571082 2942 solver.cpp:259] Train net output #0: loss = 0.190287 (* 1 = 0.190287 loss)
I1101 06:27:30.571089 2942 sgd_solver.cpp:138] Iteration 737, lr = 0.01
I1101 06:28:26.604413 2942 solver.cpp:243] Iteration 738, loss = 0.27267
I1101 06:28:26.604490 2942 solver.cpp:259] Train net output #0: loss = 0.27267 (* 1 = 0.27267 loss)
I1101 06:28:26.604509 2942 sgd_solver.cpp:138] Iteration 738, lr = 0.01
I1101 06:29:22.135064 2942 solver.cpp:243] Iteration 739, loss = 0.259939
I1101 06:29:22.135135 2942 solver.cpp:259] Train net output #0: loss = 0.259939 (* 1 = 0.259939 loss)
I1101 06:29:22.135143 2942 sgd_solver.cpp:138] Iteration 739, lr = 0.01
I1101 06:30:17.477607 2942 solver.cpp:243] Iteration 740, loss = 0.180358
I1101 06:30:17.477692 2942 solver.cpp:259] Train net output #0: loss = 0.180358 (* 1 = 0.180358 loss)
I1101 06:30:17.477699 2942 sgd_solver.cpp:138] Iteration 740, lr = 0.01
I1101 06:31:12.490366 2942 solver.cpp:243] Iteration 741, loss = 0.210995
I1101 06:31:12.490449 2942 solver.cpp:259] Train net output #0: loss = 0.210995 (* 1 = 0.210995 loss)
I1101 06:31:12.490468 2942 sgd_solver.cpp:138] Iteration 741, lr = 0.01
I1101 06:32:07.610287 2942 solver.cpp:243] Iteration 742, loss = 0.240796
I1101 06:32:07.610374 2942 solver.cpp:259] Train net output #0: loss = 0.240796 (* 1 = 0.240796 loss)
I1101 06:32:07.610383 2942 sgd_solver.cpp:138] Iteration 742, lr = 0.01
I1101 06:33:02.604507 2942 solver.cpp:243] Iteration 743, loss = 0.242676
I1101 06:33:02.604640 2942 solver.cpp:259] Train net output #0: loss = 0.242676 (* 1 = 0.242676 loss)
I1101 06:33:02.604648 2942 sgd_solver.cpp:138] Iteration 743, lr = 0.01
I1101 06:33:57.804772 2942 solver.cpp:243] Iteration 744, loss = 0.213677
I1101 06:33:57.804877 2942 solver.cpp:259] Train net output #0: loss = 0.213677 (* 1 = 0.213677 loss)
I1101 06:33:57.804898 2942 sgd_solver.cpp:138] Iteration 744, lr = 0.01
I1101 06:34:53.220233 2942 solver.cpp:243] Iteration 745, loss = 0.164903
I1101 06:34:53.220304 2942 solver.cpp:259] Train net output #0: loss = 0.164903 (* 1 = 0.164903 loss)
I1101 06:34:53.220310 2942 sgd_solver.cpp:138] Iteration 745, lr = 0.01
I1101 06:35:48.960155 2942 solver.cpp:243] Iteration 746, loss = 0.229432
I1101 06:35:48.960199 2942 solver.cpp:259] Train net output #0: loss = 0.229432 (* 1 = 0.229432 loss)
I1101 06:35:48.960220 2942 sgd_solver.cpp:138] Iteration 746, lr = 0.01
I1101 06:36:44.706097 2942 solver.cpp:243] Iteration 747, loss = 0.164644
I1101 06:36:44.706193 2942 solver.cpp:259] Train net output #0: loss = 0.164644 (* 1 = 0.164644 loss)
I1101 06:36:44.706212 2942 sgd_solver.cpp:138] Iteration 747, lr = 0.01
I1101 06:37:40.333650 2942 solver.cpp:243] Iteration 748, loss = 0.190379
I1101 06:37:40.333721 2942 solver.cpp:259] Train net output #0: loss = 0.190379 (* 1 = 0.190379 loss)
I1101 06:37:40.333729 2942 sgd_solver.cpp:138] Iteration 748, lr = 0.01
I1101 06:38:35.466141 2942 solver.cpp:243] Iteration 749, loss = 0.19267
I1101 06:38:35.466250 2942 solver.cpp:259] Train net output #0: loss = 0.19267 (* 1 = 0.19267 loss)
I1101 06:38:35.466259 2942 sgd_solver.cpp:138] Iteration 749, lr = 0.01
I1101 06:39:30.480350 2942 solver.cpp:243] Iteration 750, loss = 0.183797
I1101 06:39:30.480445 2942 solver.cpp:259] Train net output #0: loss = 0.183797 (* 1 = 0.183797 loss)
I1101 06:39:30.480453 2942 sgd_solver.cpp:138] Iteration 750, lr = 0.01
I1101 06:40:25.350738 2942 solver.cpp:243] Iteration 751, loss = 0.159131
I1101 06:40:25.350818 2942 solver.cpp:259] Train net output #0: loss = 0.159131 (* 1 = 0.159131 loss)
I1101 06:40:25.350826 2942 sgd_solver.cpp:138] Iteration 751, lr = 0.01
I1101 06:41:20.152151 2942 solver.cpp:243] Iteration 752, loss = 0.228896
I1101 06:41:20.152248 2942 solver.cpp:259] Train net output #0: loss = 0.228896 (* 1 = 0.228896 loss)
I1101 06:41:20.152256 2942 sgd_solver.cpp:138] Iteration 752, lr = 0.01
I1101 06:42:15.041281 2942 solver.cpp:243] Iteration 753, loss = 0.18304
I1101 06:42:15.041394 2942 solver.cpp:259] Train net output #0: loss = 0.18304 (* 1 = 0.18304 loss)
I1101 06:42:15.041402 2942 sgd_solver.cpp:138] Iteration 753, lr = 0.01
I1101 06:43:10.346072 2942 solver.cpp:243] Iteration 754, loss = 0.156069
I1101 06:43:10.346170 2942 solver.cpp:259] Train net output #0: loss = 0.156069 (* 1 = 0.156069 loss)
I1101 06:43:10.346177 2942 sgd_solver.cpp:138] Iteration 754, lr = 0.01
I1101 06:44:05.998122 2942 solver.cpp:243] Iteration 755, loss = 0.182228
I1101 06:44:05.998195 2942 solver.cpp:259] Train net output #0: loss = 0.182228 (* 1 = 0.182228 loss)
I1101 06:44:05.998214 2942 sgd_solver.cpp:138] Iteration 755, lr = 0.01
I1101 06:45:01.561781 2942 solver.cpp:243] Iteration 756, loss = 0.216226
I1101 06:45:01.561890 2942 solver.cpp:259] Train net output #0: loss = 0.216226 (* 1 = 0.216226 loss)
I1101 06:45:01.561898 2942 sgd_solver.cpp:138] Iteration 756, lr = 0.01
I1101 06:45:56.949368 2942 solver.cpp:243] Iteration 757, loss = 0.18065
I1101 06:45:56.949447 2942 solver.cpp:259] Train net output #0: loss = 0.18065 (* 1 = 0.18065 loss)
I1101 06:45:56.949455 2942 sgd_solver.cpp:138] Iteration 757, lr = 0.01
I1101 06:46:52.247467 2942 solver.cpp:243] Iteration 758, loss = 0.182474
I1101 06:46:52.247581 2942 solver.cpp:259] Train net output #0: loss = 0.182474 (* 1 = 0.182474 loss)
I1101 06:46:52.247588 2942 sgd_solver.cpp:138] Iteration 758, lr = 0.01
I1101 06:47:47.383482 2942 solver.cpp:243] Iteration 759, loss = 0.212113
I1101 06:47:47.383568 2942 solver.cpp:259] Train net output #0: loss = 0.212113 (* 1 = 0.212113 loss)
I1101 06:47:47.383574 2942 sgd_solver.cpp:138] Iteration 759, lr = 0.01
I1101 06:48:42.570590 2942 solver.cpp:243] Iteration 760, loss = 0.206157
I1101 06:48:42.570747 2942 solver.cpp:259] Train net output #0: loss = 0.206157 (* 1 = 0.206157 loss)
I1101 06:48:42.570770 2942 sgd_solver.cpp:138] Iteration 760, lr = 0.01
I1101 06:49:37.778367 2942 solver.cpp:243] Iteration 761, loss = 0.201435
I1101 06:49:37.778491 2942 solver.cpp:259] Train net output #0: loss = 0.201435 (* 1 = 0.201435 loss)
I1101 06:49:37.778497 2942 sgd_solver.cpp:138] Iteration 761, lr = 0.01
I1101 06:50:32.906011 2942 solver.cpp:243] Iteration 762, loss = 0.232756
I1101 06:50:32.906136 2942 solver.cpp:259] Train net output #0: loss = 0.232756 (* 1 = 0.232756 loss)
I1101 06:50:32.906154 2942 sgd_solver.cpp:138] Iteration 762, lr = 0.01
I1101 06:51:28.507810 2942 solver.cpp:243] Iteration 763, loss = 0.239409
I1101 06:51:28.507935 2942 solver.cpp:259] Train net output #0: loss = 0.239409 (* 1 = 0.239409 loss)
I1101 06:51:28.507941 2942 sgd_solver.cpp:138] Iteration 763, lr = 0.01
I1101 06:52:24.117368 2942 solver.cpp:243] Iteration 764, loss = 0.210396
I1101 06:52:24.117455 2942 solver.cpp:259] Train net output #0: loss = 0.210396 (* 1 = 0.210396 loss)
I1101 06:52:24.117462 2942 sgd_solver.cpp:138] Iteration 764, lr = 0.01
I1101 06:53:19.973865 2942 solver.cpp:243] Iteration 765, loss = 0.213389
I1101 06:53:19.973986 2942 solver.cpp:259] Train net output #0: loss = 0.213389 (* 1 = 0.213389 loss)
I1101 06:53:19.973994 2942 sgd_solver.cpp:138] Iteration 765, lr = 0.01
I1101 06:54:15.469249 2942 solver.cpp:243] Iteration 766, loss = 0.176683
I1101 06:54:15.469341 2942 solver.cpp:259] Train net output #0: loss = 0.176683 (* 1 = 0.176683 loss)
I1101 06:54:15.469347 2942 sgd_solver.cpp:138] Iteration 766, lr = 0.01
I1101 06:55:10.433040 2942 solver.cpp:243] Iteration 767, loss = 0.175243
I1101 06:55:10.433122 2942 solver.cpp:259] Train net output #0: loss = 0.175243 (* 1 = 0.175243 loss)
I1101 06:55:10.433130 2942 sgd_solver.cpp:138] Iteration 767, lr = 0.01
I1101 06:56:05.749205 2942 solver.cpp:243] Iteration 768, loss = 0.240504
I1101 06:56:05.749297 2942 solver.cpp:259] Train net output #0: loss = 0.240504 (* 1 = 0.240504 loss)
I1101 06:56:05.749305 2942 sgd_solver.cpp:138] Iteration 768, lr = 0.01
I1101 06:57:00.961922 2942 solver.cpp:243] Iteration 769, loss = 0.196663
I1101 06:57:00.962010 2942 solver.cpp:259] Train net output #0: loss = 0.196663 (* 1 = 0.196663 loss)
I1101 06:57:00.962018 2942 sgd_solver.cpp:138] Iteration 769, lr = 0.01
I1101 06:57:56.258919 2942 solver.cpp:243] Iteration 770, loss = 0.180423
I1101 06:57:56.259018 2942 solver.cpp:259] Train net output #0: loss = 0.180423 (* 1 = 0.180423 loss)
I1101 06:57:56.259026 2942 sgd_solver.cpp:138] Iteration 770, lr = 0.01
I1101 06:58:51.617398 2942 solver.cpp:243] Iteration 771, loss = 0.175648
I1101 06:58:51.617507 2942 solver.cpp:259] Train net output #0: loss = 0.175648 (* 1 = 0.175648 loss)
I1101 06:58:51.617527 2942 sgd_solver.cpp:138] Iteration 771, lr = 0.01
I1101 06:59:47.129223 2942 solver.cpp:243] Iteration 772, loss = 0.217475
I1101 06:59:47.129295 2942 solver.cpp:259] Train net output #0: loss = 0.217475 (* 1 = 0.217475 loss)
I1101 06:59:47.129302 2942 sgd_solver.cpp:138] Iteration 772, lr = 0.01
I1101 07:00:42.674275 2942 solver.cpp:243] Iteration 773, loss = 0.172873
I1101 07:00:42.674332 2942 solver.cpp:259] Train net output #0: loss = 0.172873 (* 1 = 0.172873 loss)
I1101 07:00:42.674340 2942 sgd_solver.cpp:138] Iteration 773, lr = 0.01
I1101 07:01:38.446044 2942 solver.cpp:243] Iteration 774, loss = 0.20526
I1101 07:01:38.446117 2942 solver.cpp:259] Train net output #0: loss = 0.20526 (* 1 = 0.20526 loss)
I1101 07:01:38.446125 2942 sgd_solver.cpp:138] Iteration 774, lr = 0.01
I1101 07:02:33.842972 2942 solver.cpp:243] Iteration 775, loss = 0.164669
I1101 07:02:33.843098 2942 solver.cpp:259] Train net output #0: loss = 0.164669 (* 1 = 0.164669 loss)
I1101 07:02:33.843106 2942 sgd_solver.cpp:138] Iteration 775, lr = 0.01
I1101 07:03:28.843194 2942 solver.cpp:243] Iteration 776, loss = 0.123786
I1101 07:03:28.843338 2942 solver.cpp:259] Train net output #0: loss = 0.123786 (* 1 = 0.123786 loss)
I1101 07:03:28.843358 2942 sgd_solver.cpp:138] Iteration 776, lr = 0.01
I1101 07:04:24.223012 2942 solver.cpp:243] Iteration 777, loss = 0.152694
I1101 07:04:24.223104 2942 solver.cpp:259] Train net output #0: loss = 0.152694 (* 1 = 0.152694 loss)
I1101 07:04:24.223112 2942 sgd_solver.cpp:138] Iteration 777, lr = 0.01
I1101 07:05:19.547505 2942 solver.cpp:243] Iteration 778, loss = 0.16592
I1101 07:05:19.547611 2942 solver.cpp:259] Train net output #0: loss = 0.16592 (* 1 = 0.16592 loss)
I1101 07:05:19.547618 2942 sgd_solver.cpp:138] Iteration 778, lr = 0.01
I1101 07:06:14.945013 2942 solver.cpp:243] Iteration 779, loss = 0.131236
I1101 07:06:14.945102 2942 solver.cpp:259] Train net output #0: loss = 0.131236 (* 1 = 0.131236 loss)
I1101 07:06:14.945109 2942 sgd_solver.cpp:138] Iteration 779, lr = 0.01
I1101 07:07:10.377750 2942 solver.cpp:243] Iteration 780, loss = 0.180781
I1101 07:07:10.377817 2942 solver.cpp:259] Train net output #0: loss = 0.180781 (* 1 = 0.180781 loss)
I1101 07:07:10.377825 2942 sgd_solver.cpp:138] Iteration 780, lr = 0.01
I1101 07:08:06.142426 2942 solver.cpp:243] Iteration 781, loss = 0.200052
I1101 07:08:06.142537 2942 solver.cpp:259] Train net output #0: loss = 0.200052 (* 1 = 0.200052 loss)
I1101 07:08:06.142545 2942 sgd_solver.cpp:138] Iteration 781, lr = 0.01
I1101 07:09:01.782235 2942 solver.cpp:243] Iteration 782, loss = 0.166285
I1101 07:09:01.782305 2942 solver.cpp:259] Train net output #0: loss = 0.166285 (* 1 = 0.166285 loss)
I1101 07:09:01.782312 2942 sgd_solver.cpp:138] Iteration 782, lr = 0.01
I1101 07:09:57.450909 2942 solver.cpp:243] Iteration 783, loss = 0.204904
I1101 07:09:57.451010 2942 solver.cpp:259] Train net output #0: loss = 0.204904 (* 1 = 0.204904 loss)
I1101 07:09:57.451030 2942 sgd_solver.cpp:138] Iteration 783, lr = 0.01
I1101 07:10:52.858960 2942 solver.cpp:243] Iteration 784, loss = 0.143823
I1101 07:10:52.859050 2942 solver.cpp:259] Train net output #0: loss = 0.143823 (* 1 = 0.143823 loss)
I1101 07:10:52.859056 2942 sgd_solver.cpp:138] Iteration 784, lr = 0.01
I1101 07:11:48.006325 2942 solver.cpp:243] Iteration 785, loss = 0.158639
I1101 07:11:48.006422 2942 solver.cpp:259] Train net output #0: loss = 0.158639 (* 1 = 0.158639 loss)
I1101 07:11:48.006443 2942 sgd_solver.cpp:138] Iteration 785, lr = 0.01
I1101 07:12:43.566946 2942 solver.cpp:243] Iteration 786, loss = 0.157527
I1101 07:12:43.567029 2942 solver.cpp:259] Train net output #0: loss = 0.157527 (* 1 = 0.157527 loss)
I1101 07:12:43.567036 2942 sgd_solver.cpp:138] Iteration 786, lr = 0.01
I1101 07:13:38.747087 2942 solver.cpp:243] Iteration 787, loss = 0.229001
I1101 07:13:38.747169 2942 solver.cpp:259] Train net output #0: loss = 0.229001 (* 1 = 0.229001 loss)
I1101 07:13:38.747176 2942 sgd_solver.cpp:138] Iteration 787, lr = 0.01
I1101 07:14:34.269659 2942 solver.cpp:243] Iteration 788, loss = 0.166042
I1101 07:14:34.269748 2942 solver.cpp:259] Train net output #0: loss = 0.166042 (* 1 = 0.166042 loss)
I1101 07:14:34.269755 2942 sgd_solver.cpp:138] Iteration 788, lr = 0.01
I1101 07:15:29.537577 2942 solver.cpp:243] Iteration 789, loss = 0.212571
I1101 07:15:29.537619 2942 solver.cpp:259] Train net output #0: loss = 0.212571 (* 1 = 0.212571 loss)
I1101 07:15:29.537626 2942 sgd_solver.cpp:138] Iteration 789, lr = 0.01
I1101 07:16:25.185962 2942 solver.cpp:243] Iteration 790, loss = 0.177549
I1101 07:16:25.186005 2942 solver.cpp:259] Train net output #0: loss = 0.177549 (* 1 = 0.177549 loss)
I1101 07:16:25.186012 2942 sgd_solver.cpp:138] Iteration 790, lr = 0.01
I1101 07:17:20.694247 2942 solver.cpp:243] Iteration 791, loss = 0.219427
I1101 07:17:20.694320 2942 solver.cpp:259] Train net output #0: loss = 0.219427 (* 1 = 0.219427 loss)
I1101 07:17:20.694329 2942 sgd_solver.cpp:138] Iteration 791, lr = 0.01
I1101 07:18:16.576424 2942 solver.cpp:243] Iteration 792, loss = 0.184091
I1101 07:18:16.576484 2942 solver.cpp:259] Train net output #0: loss = 0.184091 (* 1 = 0.184091 loss)
I1101 07:18:16.576506 2942 sgd_solver.cpp:138] Iteration 792, lr = 0.01
I1101 07:19:11.834085 2942 solver.cpp:243] Iteration 793, loss = 0.182248
I1101 07:19:11.834184 2942 solver.cpp:259] Train net output #0: loss = 0.182248 (* 1 = 0.182248 loss)
I1101 07:19:11.834192 2942 sgd_solver.cpp:138] Iteration 793, lr = 0.01
I1101 07:20:06.932883 2942 solver.cpp:243] Iteration 794, loss = 0.138351
I1101 07:20:06.932976 2942 solver.cpp:259] Train net output #0: loss = 0.138351 (* 1 = 0.138351 loss)
I1101 07:20:06.932982 2942 sgd_solver.cpp:138] Iteration 794, lr = 0.01
I1101 07:21:02.166926 2942 solver.cpp:243] Iteration 795, loss = 0.131442
I1101 07:21:02.167026 2942 solver.cpp:259] Train net output #0: loss = 0.131442 (* 1 = 0.131442 loss)
I1101 07:21:02.167033 2942 sgd_solver.cpp:138] Iteration 795, lr = 0.01
I1101 07:21:57.211791 2942 solver.cpp:243] Iteration 796, loss = 0.177292
I1101 07:21:57.211889 2942 solver.cpp:259] Train net output #0: loss = 0.177292 (* 1 = 0.177292 loss)
I1101 07:21:57.211910 2942 sgd_solver.cpp:138] Iteration 796, lr = 0.01
I1101 07:22:52.467435 2942 solver.cpp:243] Iteration 797, loss = 0.163172
I1101 07:22:52.467532 2942 solver.cpp:259] Train net output #0: loss = 0.163172 (* 1 = 0.163172 loss)
I1101 07:22:52.467540 2942 sgd_solver.cpp:138] Iteration 797, lr = 0.01
I1101 07:23:47.584058 2942 solver.cpp:243] Iteration 798, loss = 0.1557
I1101 07:23:47.584126 2942 solver.cpp:259] Train net output #0: loss = 0.1557 (* 1 = 0.1557 loss)
I1101 07:23:47.584133 2942 sgd_solver.cpp:138] Iteration 798, lr = 0.01
I1101 07:24:42.980532 2942 solver.cpp:243] Iteration 799, loss = 0.158722
I1101 07:24:42.980628 2942 solver.cpp:259] Train net output #0: loss = 0.158722 (* 1 = 0.158722 loss)
I1101 07:24:42.980649 2942 sgd_solver.cpp:138] Iteration 799, lr = 0.01
I1101 07:25:38.133345 2942 solver.cpp:243] Iteration 800, loss = 0.193614
I1101 07:25:38.133430 2942 solver.cpp:259] Train net output #0: loss = 0.193614 (* 1 = 0.193614 loss)
I1101 07:25:38.133437 2942 sgd_solver.cpp:138] Iteration 800, lr = 0.01
I1101 07:26:33.691634 2942 solver.cpp:243] Iteration 801, loss = 0.16334
I1101 07:26:33.691720 2942 solver.cpp:259] Train net output #0: loss = 0.16334 (* 1 = 0.16334 loss)
I1101 07:26:33.691726 2942 sgd_solver.cpp:138] Iteration 801, lr = 0.01
I1101 07:27:28.735807 2942 solver.cpp:243] Iteration 802, loss = 0.135363
I1101 07:27:28.735888 2942 solver.cpp:259] Train net output #0: loss = 0.135363 (* 1 = 0.135363 loss)
I1101 07:27:28.735895 2942 sgd_solver.cpp:138] Iteration 802, lr = 0.01
I1101 07:28:23.747395 2942 solver.cpp:243] Iteration 803, loss = 0.201854
I1101 07:28:23.747498 2942 solver.cpp:259] Train net output #0: loss = 0.201854 (* 1 = 0.201854 loss)
I1101 07:28:23.747516 2942 sgd_solver.cpp:138] Iteration 803, lr = 0.01
I1101 07:29:18.985882 2942 solver.cpp:243] Iteration 804, loss = 0.152548
I1101 07:29:18.985962 2942 solver.cpp:259] Train net output #0: loss = 0.152548 (* 1 = 0.152548 loss)
I1101 07:29:18.985970 2942 sgd_solver.cpp:138] Iteration 804, lr = 0.01
I1101 07:30:14.139812 2942 solver.cpp:243] Iteration 805, loss = 0.173412
I1101 07:30:14.139940 2942 solver.cpp:259] Train net output #0: loss = 0.173412 (* 1 = 0.173412 loss)
I1101 07:30:14.139960 2942 sgd_solver.cpp:138] Iteration 805, lr = 0.01
I1101 07:31:09.495632 2942 solver.cpp:243] Iteration 806, loss = 0.185132
I1101 07:31:09.495724 2942 solver.cpp:259] Train net output #0: loss = 0.185132 (* 1 = 0.185132 loss)
I1101 07:31:09.495733 2942 sgd_solver.cpp:138] Iteration 806, lr = 0.01
I1101 07:32:04.826592 2942 solver.cpp:243] Iteration 807, loss = 0.172771
I1101 07:32:04.826647 2942 solver.cpp:259] Train net output #0: loss = 0.172771 (* 1 = 0.172771 loss)
I1101 07:32:04.826653 2942 sgd_solver.cpp:138] Iteration 807, lr = 0.01
I1101 07:33:00.284266 2942 solver.cpp:243] Iteration 808, loss = 0.177978
I1101 07:33:00.284364 2942 solver.cpp:259] Train net output #0: loss = 0.177978 (* 1 = 0.177978 loss)
I1101 07:33:00.284373 2942 sgd_solver.cpp:138] Iteration 808, lr = 0.01
I1101 07:33:55.824797 2942 solver.cpp:243] Iteration 809, loss = 0.130759
I1101 07:33:55.824872 2942 solver.cpp:259] Train net output #0: loss = 0.130759 (* 1 = 0.130759 loss)
I1101 07:33:55.824880 2942 sgd_solver.cpp:138] Iteration 809, lr = 0.01
I1101 07:34:50.941251 2942 solver.cpp:243] Iteration 810, loss = 0.257597
I1101 07:34:50.941334 2942 solver.cpp:259] Train net output #0: loss = 0.257597 (* 1 = 0.257597 loss)
I1101 07:34:50.941356 2942 sgd_solver.cpp:138] Iteration 810, lr = 0.01
I1101 07:35:45.703112 2942 solver.cpp:243] Iteration 811, loss = 0.2065
I1101 07:35:45.703183 2942 solver.cpp:259] Train net output #0: loss = 0.2065 (* 1 = 0.2065 loss)
I1101 07:35:45.703191 2942 sgd_solver.cpp:138] Iteration 811, lr = 0.01
I1101 07:36:40.185742 2942 solver.cpp:243] Iteration 812, loss = 0.197094
I1101 07:36:40.185852 2942 solver.cpp:259] Train net output #0: loss = 0.197094 (* 1 = 0.197094 loss)
I1101 07:36:40.185858 2942 sgd_solver.cpp:138] Iteration 812, lr = 0.01
I1101 07:37:35.029402 2942 solver.cpp:243] Iteration 813, loss = 0.122207
I1101 07:37:35.029482 2942 solver.cpp:259] Train net output #0: loss = 0.122207 (* 1 = 0.122207 loss)
I1101 07:37:35.029489 2942 sgd_solver.cpp:138] Iteration 813, lr = 0.01
I1101 07:38:30.204357 2942 solver.cpp:243] Iteration 814, loss = 0.162976
I1101 07:38:30.204438 2942 solver.cpp:259] Train net output #0: loss = 0.162976 (* 1 = 0.162976 loss)
I1101 07:38:30.204445 2942 sgd_solver.cpp:138] Iteration 814, lr = 0.01
I1101 07:39:25.489464 2942 solver.cpp:243] Iteration 815, loss = 0.218391
I1101 07:39:25.489573 2942 solver.cpp:259] Train net output #0: loss = 0.218391 (* 1 = 0.218391 loss)
I1101 07:39:25.489581 2942 sgd_solver.cpp:138] Iteration 815, lr = 0.01
I1101 07:40:21.197306 2942 solver.cpp:243] Iteration 816, loss = 0.152489
I1101 07:40:21.197386 2942 solver.cpp:259] Train net output #0: loss = 0.152489 (* 1 = 0.152489 loss)
I1101 07:40:21.197393 2942 sgd_solver.cpp:138] Iteration 816, lr = 0.01
I1101 07:41:16.851727 2942 solver.cpp:243] Iteration 817, loss = 0.211059
I1101 07:41:16.851809 2942 solver.cpp:259] Train net output #0: loss = 0.211059 (* 1 = 0.211059 loss)
I1101 07:41:16.851817 2942 sgd_solver.cpp:138] Iteration 817, lr = 0.01
I1101 07:42:12.292263 2942 solver.cpp:243] Iteration 818, loss = 0.172165
I1101 07:42:12.292335 2942 solver.cpp:259] Train net output #0: loss = 0.172165 (* 1 = 0.172165 loss)
I1101 07:42:12.292342 2942 sgd_solver.cpp:138] Iteration 818, lr = 0.01
I1101 07:43:07.584506 2942 solver.cpp:243] Iteration 819, loss = 0.217142
I1101 07:43:07.584583 2942 solver.cpp:259] Train net output #0: loss = 0.217142 (* 1 = 0.217142 loss)
I1101 07:43:07.584590 2942 sgd_solver.cpp:138] Iteration 819, lr = 0.01
I1101 07:44:02.289772 2942 solver.cpp:243] Iteration 820, loss = 0.223516
I1101 07:44:02.289875 2942 solver.cpp:259] Train net output #0: loss = 0.223516 (* 1 = 0.223516 loss)
I1101 07:44:02.289881 2942 sgd_solver.cpp:138] Iteration 820, lr = 0.01
I1101 07:44:56.864765 2942 solver.cpp:243] Iteration 821, loss = 0.201347
I1101 07:44:56.864830 2942 solver.cpp:259] Train net output #0: loss = 0.201347 (* 1 = 0.201347 loss)
I1101 07:44:56.864837 2942 sgd_solver.cpp:138] Iteration 821, lr = 0.01
I1101 07:45:51.757936 2942 solver.cpp:243] Iteration 822, loss = 0.137515
I1101 07:45:51.758020 2942 solver.cpp:259] Train net output #0: loss = 0.137515 (* 1 = 0.137515 loss)
I1101 07:45:51.758028 2942 sgd_solver.cpp:138] Iteration 822, lr = 0.01
I1101 07:46:46.580322 2942 solver.cpp:243] Iteration 823, loss = 0.194158
I1101 07:46:46.580425 2942 solver.cpp:259] Train net output #0: loss = 0.194158 (* 1 = 0.194158 loss)
I1101 07:46:46.580443 2942 sgd_solver.cpp:138] Iteration 823, lr = 0.01
I1101 07:47:41.901865 2942 solver.cpp:243] Iteration 824, loss = 0.201745
I1101 07:47:41.901943 2942 solver.cpp:259] Train net output #0: loss = 0.201745 (* 1 = 0.201745 loss)
I1101 07:47:41.901962 2942 sgd_solver.cpp:138] Iteration 824, lr = 0.01
I1101 07:48:38.301646 2942 solver.cpp:243] Iteration 825, loss = 0.193692
I1101 07:48:38.301780 2942 solver.cpp:259] Train net output #0: loss = 0.193692 (* 1 = 0.193692 loss)
I1101 07:48:38.301789 2942 sgd_solver.cpp:138] Iteration 825, lr = 0.01
^C

看起来好像损失函数在震荡,也不是很懂,ctrl+C停下来,得到了一个caffenet_train_iter_827.caffemodel,在models/bvlc_reference_caffenet目录下,拿到python里测了一下自己的数据,也能分类,虽然很多分不对。

分类程序是好久之前按网上的demo写的:

 if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet_stamp/caffenet_train_iter_827.caffemodel'):
print 'CaffeNet found.'
else:
print 'Downloading pre-trained CaffeNet model...' model_def = caffe_root + 'models/bvlc_reference_caffenet_stamp/deploy.prototxt'
model_weights = caffe_root + 'models/bvlc_reference_caffenet_stamp/caffenet_train_iter_827.caffemodel' net = caffe.Net(model_def, # defines the structure of the model
model_weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout) mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu) # create transformer for the input called 'data'
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR
net.blobs['data'].reshape(50, # batch size
3, # 3-channel (BGR) images
227, 227) # image size is 227x227 image = caffe.io.load_image(caffe_root + 'examples/images/YP1000016.jpg')
transformed_image = transformer.preprocess('data', image)
plt.imshow(image) net.blobs['data'].data[...] = transformed_image ### perform classification
output = net.forward() output_prob = output['prob'][0] # the output probability vector for the first image in the batch print 'predicted class is:', output_prob.argmax()

train.txt参考各种,觉得这个博客比较良心,数据、怎么写shell也给了:http://blog.csdn.net/gaohuazhao/article/details/69568267

另有:python写train.txt

照葫芦画瓢,制作自己的训练数据:

find ./ -name "*.jpg" > train.txt 可以把目录下所有的.jpg带目录加到train.txt里,怎么把目录名(标签)加在后边还不会,最后是拷出来在windows里用UltraEdit做的...

find ./ -name "*.jpg" > 1.txt

参考creat_list.sh

paste -d' ' train.txt 1.txt >> 2.txt  可以把train.txt和1.txt拼在一起放在2.txt

因为给的数据都是训练数据,按标签放在一个目录下,怎么随机拆分成val还不知道,参考知乎答案,打算先训一下看,就不测试了,于是直接选了其中一张图片,当做val(如果val.txt为空的话,训练的时候会报错,说val长度不合法)

caffe_ssd学习-用自己的数据做训练的更多相关文章

  1. 迁移学习算法之TrAdaBoost ——本质上是在用不同分布的训练数据,训练出一个分类器

    迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法 ...

  2. Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如何使用尽可能少的标注数据来训练一个效果有潜力的分类器

    作者:AI研习社链接:https://www.zhihu.com/question/57523080/answer/236301363来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...

  3. 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)

    1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...

  4. LUSE: 无监督数据预训练短文本编码模型

    LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...

  5. 深度学习与CV教程(6) | 神经网络训练技巧 (上)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  6. QML学习笔记(五)— 做一个简单的待做事项列表

    做一个简单的QML待做事项列表,能够动态添加和删除和编辑数据 GitHub:八至 作者:狐狸家的鱼 本文链接:QML学习笔记(五)— 做一个待做事项列表 主要用到QML:ListView 效果 全部代 ...

  7. 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络

    上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...

  8. jsoup爬虫简书首页数据做个小Demo

    代码地址如下:http://www.demodashi.com/demo/11643.html 昨天LZ去面试,遇到一个大牛,被血虐一番,发现自己基础还是很薄弱,对java一些原理掌握的还是不够稳固, ...

  9. pandas学习(四)--数据的归一化

    欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...

随机推荐

  1. 第二章 深入C#数据类型

    深入C#数据类型       巧记:值(无ref)+值=不变 值(无ref)+引=变     引(有ref)+值/引=变     1.值类型和引用类型 1.引用类型 源于system.object家族 ...

  2. ansible源码安装

    一.升级python 笔者系统为centos6.5,系统默认安装python2.6,虽然ansible官方文档要求python版本为2.6或2.7,然而许多人都说使用2.6可能出现一系列问题,所以作者 ...

  3. 8-GPIO复用

    8-GPIO引脚复用与重映射 0.通用GPIO 在复位期间及复位刚刚完成后,复用功能尚未激活,I/O 端口被配置为输入浮空模式. 复位后,调试引脚处于复用功能上拉/下拉状态: ● PA15:JTDI ...

  4. Github上Laravel开源排行榜Star数前30名

    Github上Laravel开源排行榜前30名,罗列所有 Laravel 开源扩展包,含 Github Star 数量,下载数量和项目简介.默认排序是按Star数量从多到少来排 1.cachethq/ ...

  5. finecms栏目文章页seo设置

    finecms栏目页和文章页默认的标题是页面title_二级栏目title_一级栏目title_网站名称(比如:finecms怎么设置标题_finecms二次开发_finecms_ytkah博客),如 ...

  6. $ sudo python -m pip install pylint 出错解决方法

    问题:在unbuntu执行$ sudo python -m pip install pylint出错解决方法支行以下命令sudo pip install pylint==1.9.3这样roboware ...

  7. webuploader.min.js 简单例子

    一个百度开发的开源框架 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html& ...

  8. Linux学习和ROS安装(1)

    参考文档:https://www.cnblogs.com/liu-fa/p/5779206.html#undefined 系统环境:Window7 64bit+VMware11 ubuntu-gnom ...

  9. 【Java】-NO.17.EBook.4.Java.1.014-【疯狂Java讲义第3版 李刚】- Annotation

    1.0.0 Summary Tittle:[Java]-NO.17.EBook.4.Java.1.014-[疯狂Java讲义第3版 李刚]-  Annotation Style:EBook Serie ...

  10. 【LeetCode每天一题】Median of Two Sorted Arrays(两数组中的中位数)

    There are two sorted arrays nums1 and nums2 of size m and n respectively.  Find the median of the tw ...