QuerySet对象

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

Entry.objects.all()[:5]      # (LIMIT 5)
Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。

可迭代

articleList=models.Article.objects.all()

for article in articleList:
print(article.title)

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

queryResult=models.Article.objects.all() # not hits database

print(queryResult) # hits database

for article in queryResult:
print(article.title) # hits database

一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

print([a.title for a in models.Article.objects.all()])
print([a.create_time for a in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

queryset = Entry.objects.all()
print queryset[5] # Queries the database
print queryset[5] # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

queryset = Entry.objects.all()
[entry for entry in queryset] # Queries the database
print queryset[5] # Uses cache
print queryset[5] # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

[entry for entry in queryset]
bool(queryset)
entry in queryset
list(queryset)

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()
print(queryResult) # hits database
print(queryResult) # hits database

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。

中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下

from django.db import models

class Person(models.Model):
name = models.CharField(max_length=128) def __str__(self): # __unicode__ on Python 2
return self.name class Group(models.Model):
name = models.CharField(max_length=128)
members = models.ManyToManyField(Person, through='Membership') def __str__(self): # __unicode__ on Python 2
return self.name class Membership(models.Model):
person = models.ForeignKey(Person)
group = models.ForeignKey(Group)
date_joined = models.DateField()
invite_reason = models.CharField(max_length=64)

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason="Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系

# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
# AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系

>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()

查询优化

表数据

class UserInfo(AbstractUser):
"""
用户信息
"""
nid = models.BigAutoField(primary_key=True)
nickname = models.CharField(verbose_name='昵称', max_length=32)
telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码')
avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png")
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们',
to='UserInfo',
through='UserFans',
related_name='f',
through_fields=('user', 'follower')) def __str__(self):
return self.username class UserFans(models.Model):
"""
互粉关系表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users')
follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model): """
博客信息
"""
nid = models.BigAutoField(primary_key=True)
title = models.CharField(verbose_name='个人博客标题', max_length=64)
site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True)
theme = models.CharField(verbose_name='博客主题', max_length=32)
user = models.OneToOneField(to='UserInfo', to_field='nid')
def __str__(self):
return self.title class Category(models.Model):
"""
博主个人文章分类表
"""
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='分类标题', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model): nid = models.BigAutoField(primary_key=True)
title = models.CharField(max_length=50, verbose_name='文章标题')
desc = models.CharField(max_length=255, verbose_name='文章描述')
read_count = models.IntegerField(default=0)
comment_count= models.IntegerField(default=0)
up_count = models.IntegerField(default=0)
down_count = models.IntegerField(default=0)
category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True)
create_time = models.DateField(verbose_name='创建时间')
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid')
tags = models.ManyToManyField(
to="Tag",
through='Article2Tag',
through_fields=('article', 'tag'),
) class ArticleDetail(models.Model):
"""
文章详细表
"""
nid = models.AutoField(primary_key=True)
content = models.TextField(verbose_name='文章内容', ) article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid') class Comment(models.Model):
"""
评论表
"""
nid = models.BigAutoField(primary_key=True)
article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid')
content = models.CharField(verbose_name='评论内容', max_length=255)
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论')
user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid') up_count = models.IntegerField(default=0) def __str__(self):
return self.content class ArticleUpDown(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
article = models.ForeignKey("Article", null=True)
models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model):
"""
点赞表
"""
nid = models.AutoField(primary_key=True)
user = models.ForeignKey('UserInfo', null=True)
comment = models.ForeignKey("Comment", null=True) class Tag(models.Model):
nid = models.AutoField(primary_key=True)
title = models.CharField(verbose_name='标签名称', max_length=32)
blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article2Tag(models.Model):
nid = models.AutoField(primary_key=True)
article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid')
tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')

select_related

简单使用

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

下面的例子解释了普通查询和select_related() 查询的区别。

查询id=2的文章的分类名称,下面是一个标准的查询:

# Hits the database.
article=models.Article.objects.get(nid=2) # Hits the database again to get the related Blog object.
print(article.category.title)
'''

SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id"
FROM "blog_article"
WHERE "blog_article"."nid" = 2; args=(2,) SELECT
"blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id"
FROM "blog_category"
WHERE "blog_category"."nid" = 4; args=(4,) '''

如果我们使用select_related()函数

articleList=models.Article.objects.select_related("category").all()
for article_obj in articleList:
# Doesn't hit the database, because article_obj.category
# has been prepopulated in the previous query.
#不再查询数据库,因为第一次查询,数据已经填充进去了
print(article_obj.category.title)
SELECT
"blog_article"."nid",
"blog_article"."title",
"blog_article"."desc",
"blog_article"."read_count",
"blog_article"."comment_count",
"blog_article"."up_count",
"blog_article"."down_count",
"blog_article"."category_id",
"blog_article"."create_time",
"blog_article"."blog_id",
"blog_article"."article_type_id", "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");

多外键查询

这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

article=models.Article.objects.select_related("category").get(nid=1)
print(article.articledetail)

观察logging结果,发现依然需要查询两次,所以需要改为:

article=models.Article.objects.select_related("category","articledetail").get(nid=1)
print(article.articledetail)

或者:1.7以后支持链式操作

article=models.Article.objects
             .select_related("category")
             .select_related("articledetail")
             .get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
SELECT

    "blog_article"."nid",
"blog_article"."title",
...... "blog_category"."nid",
"blog_category"."title",
"blog_category"."blog_id", "blog_articledetail"."nid",
"blog_articledetail"."content",
"blog_articledetail"."article_id" FROM "blog_article"
LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
WHERE "blog_article"."nid" = 1; args=(1,)

 深层查询

# 查询id=1的文章的用户姓名

    article=models.Article.objects.select_related("blog").get(nid=1)
print(article.blog.user.username)

依然需要查询两次

SELECT
"blog_article"."nid",
"blog_article"."title",
...... "blog_blog"."nid",
"blog_blog"."title", FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
WHERE "blog_article"."nid" = 1; SELECT
"blog_userinfo"."password",
"blog_userinfo"."last_login",
...... FROM "blog_userinfo"
WHERE "blog_userinfo"."nid" = 1;

这是因为第一次查询没有query到userInfo表,所以,修改如下:

article=models.Article.objects.select_related("blog__user").get(nid=1)
print(article.blog.user.username)
SELECT

"blog_article"."nid", "blog_article"."title",
...... "blog_blog"."nid", "blog_blog"."title",
...... "blog_userinfo"."password", "blog_userinfo"."last_login",
...... FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
WHERE "blog_article"."nid" = 1;

总结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
  4. 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  5. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  6. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  7. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

prefetch_related()

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 5

改为prefetch_related:

# 查询所有文章关联的所有标签
article_obj=models.Article.objects.prefetch_related("tags").all()
for i in article_obj: print(i.tags.all()) #4篇文章: hits database 2
SELECT "blog_article"."nid",
"blog_article"."title",
...... FROM "blog_article"; SELECT
("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
"blog_tag"."nid",
"blog_tag"."title",
"blog_tag"."blog_id"
FROM "blog_tag"
INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);
def select_related(self, *fields)
性能相关:表之间进行join连表操作,一次性获取关联的数据。
model.tb.objects.all().select_related()
model.tb.objects.all().select_related('外键字段')
model.tb.objects.all().select_related('外键字段__外键字段') def prefetch_related(self, *lookups)
性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。
# 获取所有用户表
# 获取用户类型表where id in (用户表中的查到的所有用户ID)
models.UserInfo.objects.prefetch_related('外键字段') from django.db.models import Count, Case, When, IntegerField
Article.objects.annotate(
numviews=Count(Case(
When(readership__what_time__lt=treshold, then=1),
output_field=CharField(),
))
) students = Student.objects.all().annotate(num_excused_absences=models.Sum(
models.Case(
models.When(absence__type='Excused', then=1),
default=0,
output_field=models.IntegerField()
)))

 

  # 加select_related 主动做链表,相当于直接链表把数据全取出来了,
# 不加:for循环几次,就再次查几次数据库
# select_related('author_detail')参数是fk的字段,可能有多个外键,所以可以写多个
ret=models.Author.objects.all().select_related('author_detail')
for i in ret:
print(i.author_detail.addr)
ret = models.Author.objects.all()
for i in ret:
print(i.author_detail.addr) # 用了fk,但是不做链表,做多次查询,把结果集都放到对象中
# 两次查询,相当于select * from author_detail where nid in [1,2]
ret=models.Author.objects.all().prefetch_related('author_detail')
for i in ret:
print(i.author_detail.addr)
# 总结:数据量少,可以用select_related
# 数据量比较多用prefetch_related

extra

extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 selectwhere or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article
           .objects.extra(select={'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习

# in sqlite:
article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title")
print(article_obj)
# <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>

参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article
           .objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
extra, 额外查询条件以及相关表,排序

                models.UserInfo.objects.filter(id__gt=1)
models.UserInfo.objects.all()
# id name age ut_id models.UserInfo.objects.extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# a. 映射
# select
# select_params=None
# select 此处 from 表 # b. 条件
# where=None
# params=None,
# select * from 表 where 此处 # c. 表
# tables
# select * from 表,此处 # c. 排序
# order_by=None
# select * from 表 order by 此处 models.UserInfo.objects.extra(
select={'newid':'select count(1) from app01_usertype where id>%s'},
select_params=[1,],
where = ['age>%s'],
params=[18,],
order_by=['-age'],
tables=['app01_usertype']
)
"""
select
app01_userinfo.id,
(select count(1) from app01_usertype where id>1) as newid
from app01_userinfo,app01_usertype
where
app01_userinfo.age > 18
order by
app01_userinfo.age desc
""" result = models.UserInfo.objects.filter(id__gt=1).extra(
where=['app01_userinfo.id < %s'],
params=[100,],
tables=['app01_usertype'],
order_by=['-app01_userinfo.id'],
select={'uid':1,'sw':"select count(1) from app01_userinfo"}
)
print(result.query)
# SELECT (1) AS "uid", (select count(1) from app01_userinfo) AS "sw", "app01_userinfo"."id", "app01_userinfo"."name", "app01_userinfo"."age", "app01_userinfo"."ut_id" FROM "app01_userinfo" , "app01_usertype" WHERE ("app01_userinfo"."id" > 1 AND (app01_userinfo.id < 100)) ORDER BY ("app01_userinfo".id) DESC

  

 # 在对象中加入字段
ret=models.Author.objects.all().filter(nid__gt=1).extra(select={'n':'select count(*) from app01_book where nid>%s'},select_params=[1])
print(ret[0].n)
print(ret.query)
# 给字段重命名
ret=models.Author.objects.all().filter(author_detail__telephone=132234556).extra(select={'bb':"app01_authordatail.telephone"}).values('bb')
print(ret)
print(ret.query)

原生sql

from django.db import connection, connections

cursor = connection.cursor() # connection=default数据
cursor = connections['db2'].cursor() cursor.execute("""SELECT * from auth_user where id = %s""", [1]) row = cursor.fetchone()
row = cursor.fetchall()

  

    ret=models.Author.objects.raw('select * from app01_author where nid>1')
print(ret)
for i in ret:
print(i)
print(ret.query)
# 会把book的字段放到author对象中
ret=models.Author.objects.raw('select * from app01_book where nid>1')
print(ret)
for i in ret:
print(i.price)
print(type(i))

整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如

Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])
...更优于: Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")
注意该方法有很多注意事项,所以确保它适用于你的情况。 这也可以用在ManyToManyFields中,所以: my_band.members.add(me, my_friend)
...更优于: my_band.members.add(me)
my_band.members.add(my_friend)
...其中Bands和Artists具有多对多关联。

事务操作

# 事务操作
from django.db import transaction
with transaction.atomic():

defer和only

defer('id','name'):取出对象,字段除了id和name都有
only('id','name'):取的对象,只有id和name
如果点,依然能点出其它列,但是不要点了,因为取没有的列,会再次查询数据库

ret=models.Author.objects.only('nid')
for i in ret:
# 查询不在的字段,会再次查询数据库,造成数据库压力大
print(i.name)

Django框架(十) Django之模型进阶的更多相关文章

  1. Django:学习笔记(7)——模型进阶

    Django:学习笔记(7)——模型进阶 模型的继承 我们在面向对象的编程中,一个很重要的的版块,就是类的继承.父类保存了所有子类共有的内容,子类通过继承它来减少冗余代码并进行灵活扩展. 在Djang ...

  2. Django框架 之 ORM中介模型

    Django框架 之 ORM中介模型 中介模型 处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField  就可以了.但是,有时你可能需要关联数据 ...

  3. Django框架02 /Django下载安装、url路由分发

    Django框架02 /Django下载安装.url路由分发 目录 Django框架02 /Django下载安装.url路由分发 1. django下载安装 2. pycharm创建项目 3. 基于D ...

  4. Django框架 (七) Django ORM模型

    ORM简介 查询数据层次图解:如果操作mysql,ORM是在pymysq之上又进行了一层封装

  5. [Python] Django框架入门2——深入模型

    说明: 本文主要深入了解模型(models.py),涉及ORM简介.模型定义.模型成员.模型查询.自连接等.需要一定基础,可以先走一走基本入门流程. 附录一使用mysql数据库,附录二Django开发 ...

  6. Django框架(八) Django之ORM数据库操作

    创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对一的关系( ...

  7. Django框架(一)-Django初识

    Django初识 一.Web框架本质—自己实现Web框架 1.所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端 import socket sk = sock ...

  8. 3/18 Django框架 启动django服务

    web框架:本质是socket服务端,socket通常也被称为"套接字",用于描述IP地址和端口,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的通信.web框架就是将 ...

  9. django框架基础-django redis-长期维护-20191220

    ###############   django框架-django redis    ############### # 学习django redis我能得到什么? # 1,项目中广泛使用到redis ...

随机推荐

  1. jar包的读取

    昨天在做项目插件的时候,因为会用到jar包中的一个文件来初始化程序.并且以后还是会访问这个文件,所以就想到干脆吧文件拷贝到指定目录.在拷贝的时候也费了好一会时间,这里涉及到了jar文件的操作,在这里记 ...

  2. Unity shader学习之屏幕后期处理效果之均值模糊

    均值模糊,也使用卷积来实现,之不过卷积中每个值均相等,且相加等于1. 代码如下, 子类: using UnityEngine; public class MeanBlurRenderer : Post ...

  3. SQLSetConnectAttr

    SQLSetConnectAttr 函数定义: 用法类似于SQLSetEnvAttr,该函数是设置连接的各项属性用的 SQLRETURN SQLSetConnectAttr( SQLHDBC      ...

  4. Abandoned country(最小生成树+树形DP)

    #include<bits/stdc++.h> using namespace std; struct node{ int u, v, w, nex; bool gone; node(){ ...

  5. codeforces 984B Minesweeper

    题意: 给出一个矩阵,如果一个格子是数字,那么与这个格子相邻的格子中有炸弹的数量必须等于这个格子中的数字: 如果一个格子是空地,那么这个格子的所有相邻的格子中就不能有炸弹. 判断这个矩阵是否合法. 思 ...

  6. 【Hive学习之三】Hive 函数

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  7. MySql 应用语句

    [1]MySQL基础语句 -- 查询mysql版本号 SELECT VERSION(); -- 创建数据库 DROP DATABASE IF EXISTS study; -- 如果存在先删除 CREA ...

  8. python 创建二维数组的方法

    废话不多说,直接上代码: #coding=utf-8 def two_di_demo1(): a=[] for i in range(10): a.append([]) for j in range( ...

  9. super和this关键字

    super关键字: this关键字: 栈内存和堆内存和方法区内存分析: 其中,new出来的即对象都在堆内存区: main方法先进栈: 方法区中 [[ super_class ]]是编译器生成,代码表现 ...

  10. 进程表示之进程ID号

    UNIX进程总是会分配一个号码用于在其命名空间总唯一地标识它们,该号码称作进程ID号,简称PID. 1.进程ID 但每个进程除了PID外,还有其他的ID,有下列几种可能的类型: (1)处于某个线程组中 ...