The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Today I tried a new project named: Face-Aging-CAAE

Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Github: https://github.com/ZZUTK/Face-Aging-CAAE

But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow.

1. TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

2. ValueError: Only call 'sigmoid_cross_entropy_with_logits' with named arguments (labels=..., logits=..., ...)

3. ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope ?


The follow changes are needed for this code to solve above issues. 


  Then, you will see the process of training:

  

  

The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)的更多相关文章

  1. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  2. image-to-image translation with conditional adversarial networks文献笔记

    Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, J ...

  3. Learning Face Age Progression: A Pyramid Architecture of GANs

    前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向.基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式.end2end.以及MaskC ...

  4. Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder

    博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...

  5. (Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks

    Introduction 1. develop a common framework for all problems that are the task of predicting pixels f ...

  6. 《Image-to-Image Translation with Conditional Adversarial Networks》论文笔记

    出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

随机推荐

  1. 向SQL Server中导入Excel的数据

    1.  手动界面导入Excel数据 同 https://jingyan.baidu.com/article/ce09321b9a0e252bff858ff9.html 首先打开并登陆sql serve ...

  2. 大数据处理框架之Strom:容错机制

    1.集群节点宕机Nimbus服务器 单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可非Nimbus服务器 故障时,该节点上所有Task任务都会超时,Nimb ...

  3. C/C++笔试题(编程题)

    面试过程中遇到的编程题整理,于此备录.分享,共勉.(持续更新中......欢迎补充) (1)用户输入M, N值,从1至N开始顺序循环数数,每数到M输出该数值,直至全部输出.写出C程序. 程序代码如下: ...

  4. nextjs 服务端渲染请求参数

    Post.getInitialProps = async function (context) { const { id } = context.query const res = await fet ...

  5. createDocumentFragment()用法总结

    1.createDocumentFragment()方法,是用来创建一个虚拟的节点对象,或者说,是用来创建文档碎片节点.它可以包含各种类型的节点,在创建之初是空的. 2.DocumentFragmen ...

  6. vue 去掉路由中的#

    在router.js中修改, const router = new VueRouter({ mode: 'history', routes: [...] })

  7. python-数据分析与展示(Numpy、matplotlib、pandas)---1

    笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正 1.ndarray对象的属性 .ndim..shape..size(元素个数,不是占用 ...

  8. hibernate文档头的不同版本

    <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "h ...

  9. linux 函数库使用

    程序函数库可分为3种类型:静态函 数库(static libraries).共享函数库(shared libraries)和动态加载函数库(dynamically loaded libraries) ...

  10. Linux进程内存分析pmap命令

    转自: http://blog.csdn.net/u013982161/article/details/52654256 名称: pmap - report memory map of a proce ...