The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Today I tried a new project named: Face-Aging-CAAE

Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Github: https://github.com/ZZUTK/Face-Aging-CAAE

But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow.

1. TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

2. ValueError: Only call 'sigmoid_cross_entropy_with_logits' with named arguments (labels=..., logits=..., ...)

3. ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope ?


The follow changes are needed for this code to solve above issues. 


  Then, you will see the process of training:

  

  

The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)的更多相关文章

  1. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  2. image-to-image translation with conditional adversarial networks文献笔记

    Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, J ...

  3. Learning Face Age Progression: A Pyramid Architecture of GANs

    前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向.基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式.end2end.以及MaskC ...

  4. Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder

    博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...

  5. (Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks

    Introduction 1. develop a common framework for all problems that are the task of predicting pixels f ...

  6. 《Image-to-Image Translation with Conditional Adversarial Networks》论文笔记

    出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

随机推荐

  1. Saiku + Kylin 多维分析平台探索

    背景 为了应对各种数据需求,通常,我们的做法是这样的: 对于临时性的数据需求:写HQL到Hive里去查一遍,然后将结果转为excel发送给需求人员. 对于周期性的.长期性的数据需求:编写脚本,结合Hi ...

  2. SpringMVC七种参数绑定简单介绍

    a. 默认支持的类型:        httpServletRequest, httpservletresponse, httpsession, model        看自己需要, 如果需要用就加 ...

  3. PIVOT(透视转换)和UNPIVOT(逆透视转换)

    一.原数据状态 二.手动写透视转换1 三.手动写透视转换2 四.PIVOT(透视转换)和UNPIVOT(逆透视转换)详细使用 使用标准SQL进行透视转换和逆视转换 --行列转换 create tabl ...

  4. WebSocket和long poll、ajax轮询的区别,ws协议测试

    WebSocket和long poll.ajax轮询的区别,ws协议测试 WebSocket是HTML5出的东西(协议),也就是说HTTP协议没有变化,或者说没关系,但HTTP是不支持持久连接的(长连 ...

  5. HDU 2176 取(m堆)石子游戏 (尼姆博奕)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176 m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎 ...

  6. [转载]Oracle数据库基础--SQL查询经典例题

    Oracle基础练习题,采用Oracle数据库自带的表,适合初学者,其中包括了一些简单的查询,已经具有Oracle自身特点的单行函数的应用 本文使用的实例表结构与表的数据如下: emp员工表结构如下: ...

  7. <转>jmeter(五)JDBC Request

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...

  8. 案例:Redis在唯品会的大规模应用

    目前在唯品会主要负责redis/hbase的运维和开发支持工作,也参与工具开发工作,本文是在Redis中国用户组给大家分享redis cluster的生产实践. 分享大纲 本次分享内容如下: 1.生产 ...

  9. SQL Server中调用WebService

    首先要启用Ole Automation Procedures,使用sp_configure 配置时如果报错"不支持对系统目录进行即席更新",可以加上WITH OVERRIDE选项. ...

  10. e3.7.2-MyEclipse-10.7安装SVN插件

    MyEclipse 10.7的版本是:e3.7.2,要求是匹配该插件eclipse_svn_site-1.10.1的版本,否则无效 将eclipse_svn_site-1.10.1插件文件夹直接拷贝到 ...