(转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning
2018-08-03 19:16:56
本文转自:https://github.com/floodsung/Meta-Learning-Papers
1 Legacy Papers
[1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural Networks, 16(1):5–9, 2003.
[2] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer, 2001.
[3] Kunikazu Kobayashi, Hiroyuki Mizoue, Takashi Kuremoto, and Masanao Obayashi. A meta-learning method based on temporal difference error. In International Conference on Neural Information Processing, pages 530–537. Springer, 2009.
[4] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pages 3–17. Springer, 1998.
[5] A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3. IEEE, 2001.
[6] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2):77–95, 2002.
[7] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In AAAI, volume 1, pp. 3, 2008.
[8] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum.One shot learning of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, volume 172, pp. 2, 2011.
[9] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.
[10] Ju ̈rgen Schmidhuber. A neural network that embeds its own meta-levels. In Neural Networks, 1993., IEEE International Conference on, pp. 407–412. IEEE, 1993.
[11] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.
[12] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Universite ́ de Montre ́al, De ́partement d’informatique et de recherche ope ́rationnelle, 1990.
[13] Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for ANNs. Neural Processing Letters, 2(4):26–30, 1995.
[14] Rich Caruana. Learning many related tasks at the same time with backpropagation. Advances in neural information processing systems, pp. 657–664, 1995.
[15] Giraud-Carrier, Christophe, Vilalta, Ricardo, and Brazdil, Pavel. Introduction to the special issue on meta-learning. Machine learning, 54(3):187–193, 2004.
[16] Jankowski, Norbert, Duch, Włodzisław, and Grabczewski, Krzysztof. Meta-learning in computational intelligence, volume 358. Springer Science & Business Media, 2011.
[17] N. E. Cotter and P. R. Conwell. Fixed-weight networks can learn. In International Joint Conference on Neural Networks, pages 553–559, 1990.
[18] J. Schmidhuber. Evolutionary principles in self-referential learning; On learning how to learn: The meta-meta-... hook. PhD thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
[19] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992.
[20] Jurgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Simple principles of metalearning. Technical report, SEE, 1996.
[21] Thrun, Sebastian and Pratt, Lorien. Learning to learn. Springer Science & Business Media, 1998.
2 Recent Papers
[1] Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau, David, Schaul, Tom, and de Freitas, Nando. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016
[2] Ba, Jimmy, Hinton, Geoffrey E, Mnih, Volodymyr, Leibo, Joel Z, and Ionescu, Catalin. Using fast weights to attend to the recent past. In Advances In Neural Information Processing Systems, pp. 4331–4339, 2016
[3] David Ha, Andrew Dai and Le, Quoc V. Hypernetworks. In ICLR 2017, 2017.
[4] Koch, Gregory. Siamese neural networks for one-shot image recognition. PhD thesis, University of Toronto, 2015.
[5] Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenenbaum, Josh. One-shot learning by inverting a compositional causal process. In Advances in neural information processing systems, pp. 2526–2534, 2013.
[6] Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew, Wierstra, Daan, and Lillicrap, Timothy. Meta-learning with memory-augmented neural networks. In Proceedings of The 33rd International Conference on Machine Learning, pp. 1842–1850, 2016.
[7] Vinyals, Oriol, Blundell, Charles, Lillicrap, Tim, Wierstra, Daan, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.
[8] Kaiser, Lukasz, Nachum, Ofir, Roy, Aurko, and Bengio, Samy. Learning to remember rare events. In ICLR 2017, 2017.
[9] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to navigate in complex environments. Techni- cal report, DeepMind, 2016.
[10] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. Technical report, submitted to ICLR 2017, 2016.
[11] Y. Duan, J. Schulman, X. Chen, P. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. Technical report, UC Berkeley and OpenAI, 2016.
[12] Li, Ke and Malik, Jitendra. Learning to optimize. International Conference on Learning Representations (ICLR), 2017.
[13] Edwards, Harrison and Storkey, Amos. Towards a neural statistician. International Conference on Learning Representations (ICLR), 2017.
[14] Parisotto, Emilio, Ba, Jimmy Lei, and Salakhutdinov, Ruslan. Actor-mimic: Deep multitask and transfer reinforcement learning. International Conference on Learning Representations (ICLR), 2016.
[15] Ravi, Sachin and Larochelle, Hugo. Optimization as a model for few-shot learning. In International Conference on Learning Representations (ICLR), 2017.
[16] Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. arXiv preprint arXiv:1703.03400.
[17] Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T. P., & de Freitas, N. (2016). Learning to Learn for Global Optimization of Black Box Functions. arXiv preprint arXiv:1611.03824.
[18] Munkhdalai T, Yu H. Meta Networks. arXiv preprint arXiv:1703.00837, 2017.
[19] Duan Y, Andrychowicz M, Stadie B, et al. One-Shot Imitation Learning. arXiv preprint arXiv:1703.07326, 2017.
[20] Woodward M, Finn C. Active One-shot Learning. arXiv preprint arXiv:1702.06559, 2017.
[21] Wichrowska O, Maheswaranathan N, Hoffman M W, et al. Learned Optimizers that Scale and Generalize. arXiv preprint arXiv:1703.04813, 2017.
[22] Hariharan, Bharath, and Ross Girshick. Low-shot visual object recognition arXiv preprint arXiv:1606.02819 (2016).
[23] Wang J X, Kurth-Nelson Z, Tirumala D, et al. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.
[24] Flood Sung, Zhang L, Xiang T, Hospedales T, et al. Learning to Learn: Meta-Critic Networks for Sample Efficient Learning. arXiv preprint arXiv:1706.09529, 2017.
[25] Li Z, Zhou F, Chen F, et al. Meta-SGD: Learning to Learn Quickly for Few Shot Learning. arXiv preprint arXiv:1707.09835, 2017.
[26] Mishra N, Rohaninejad M, Chen X, et al. Meta-Learning with Temporal Convolutions. arXiv preprint arXiv:1707.03141, 2017.
[27] Frans K, Ho J, Chen X, et al. Meta Learning Shared Hierarchies. arXiv preprint arXiv:1710.09767, 2017.
[28] Finn C, Yu T, Zhang T, et al. One-shot visual imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.
[29] Flood Sung, Yongxin Yang, Zhang Li, Xiang T,Philip Torr, Hospedales T, et al Learning to Compare: Relation Network for Few Shot Learning. arXiv preprint arXiv:1711.06025, 2017.
[30] Brenden M Lake, Ruslan Salakhutdinov, Joshua B Tenenbaum Human-level concept learning through probabilistic program induction. In Science, volume 350, pp. 1332-1338, 2015.
[32] Xu D, Nair S, Zhu Y, et al. Neural task programming: Learning to generalize across hierarchical tasks. arXiv preprint arXiv:1710.01813, 2017.
[33] Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in Neural Information Processing Systems (pp. 523-531).
[34] Wang, Yu-Xiong, and Martial Hebert. Learning to learn: Model regression networks for easy small sample learning.European Conference on Computer Vision. Springer International Publishing, 2016.
[35] Triantafillou, Eleni, Hugo Larochelle, Jake Snell, Josh Tenenbaum, Kevin Jordan Swersky, Mengye Ren, Richard Zemel, and Sachin Ravi. Meta-Learning for Semi-Supervised Few-Shot Classification. ICLR 2018.
[36] Rabinowitz, Neil C., Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Eslami, and Matthew Botvinick. Machine Theory of Mind. arXiv preprint arXiv:1802.07740 (2018).
[37] Reed, Scott, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Eslami, Danilo Rezende, Oriol Vinyals, and Nando de Freitas. Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions. arXiv preprint arXiv:1710.10304 (2017).
[38] Xu, Zhongwen, Hado van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning arXiv preprint arXiv:1805.09801 (2018).
[39] Xu, Kelvin, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a Prior over Intent via Meta-Inverse Reinforcement Learning arXiv preprint arXiv:1805.12573 (2018).
[40] Finn, Chelsea, Kelvin Xu, and Sergey Levine. Probabilistic Model-Agnostic Meta-Learning arXiv preprint arXiv:1806.02817 (2018).
[41] Gupta, Abhishek, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised Meta-Learning for Reinforcement Learning arXiv preprint arXiv:1806.04640(2018).
[42] Yoon, Sung Whan, Jun Seo, and Jaekyun Moon. Meta Learner with Linear Nulling arXiv preprint arXiv:1806.01010 (2018).
[43] Kim, Taesup, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. Bayesian Model-Agnostic Meta-Learning arXiv preprint arXiv:1806.03836 (2018).
[44] Gupta, Abhishek, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-Reinforcement Learning of Structured Exploration Strategies arXiv preprint arXiv:1802.07245 (2018).
[45] Clavera, Ignasi, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Learning to Adapt: Meta-Learning for Model-Based Control arXiv preprint arXiv:1803.11347 (2018).
[46] Houthooft, Rein, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and Pieter Abbeel. Evolved policy gradients arXiv preprint arXiv:1802.04821 (2018).
[47] Xu, Tianbing, Qiang Liu, Liang Zhao, Wei Xu, and Jian Peng. Learning to Explore with Meta-Policy Gradient arXiv preprint arXiv:1803.05044 (2018).
[48] Stadie, Bradly C., Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning arXiv preprint arXiv:1803.01118 (2018).
(转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning的更多相关文章
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System
resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- [DEEP LEARNING An MIT Press book in preparation]Deep Learning for AI
动人的DL我们有六个月的时间,积累了一定的经验,实验,也DL有了一些自己的想法和理解.曾经想扩大和加深DL相关方面的一些知识. 然后看到了一个MIT按有关的对出版物DL图书http://www.iro ...
- Learning How to Learn, Part 1
Jan 8, 2015 • vancexu Learning How to Learn: Powerful mental tools to help you master tough subjects ...
- Cousera课程Learning How to Learn学习报告
花了三天完成了Cousera上的Learning how to learn的课程,由于未完成批阅他人作业,所以分不是很高,但是老师讲的课程非常的好,值得一听: 课程的笔记: 我们的一生是一个不断接触和 ...
- 【转载】论文笔记系列-Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning
一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将 ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- Learning How to Learn学习笔记(转)
add by zhj: 工作中提高自己水平的最重要的一点是——快速的学习能力.这篇文章就是探讨这个问题的,掌握了快速学习能力的规律,你自然就有了快速学习能力了. 原文:Learning How to ...
随机推荐
- ModuleNotFoundError: No module named '_pydevd_bundle.pydevd_cython' error on debug
现象:pycharm调试代码出现错误:ModuleNotFoundError: No module named '_pydevd_bundle.pydevd_cython' error on debu ...
- C# 队列(Queue)和 堆栈(Stack)
C# 队列(Queue)和 堆栈(Stack) C# 队列(Queue) 队列(Queue)代表了一个先进先出的对象集合.当您需要对各项进行先进先出的访问时,则使用队列.当您在列表中添加一项,称为入队 ...
- 使用Groovy+Spock轻松写出更简洁的单测
当无法避免做一件事时,那就让它变得更简单. 概述 单测是规范的软件开发流程中的必不可少的环节之一.再伟大的程序员也难以避免自己不犯错,不写出有BUG的程序.单测就是用来检测BUG的.Java阵营中,J ...
- CSS 选择器权重计算规则
其实,CSS有自己的优先级计算公式,而不仅仅是行间>内部>外部样式:ID>class>元素. 一.样式类型 1.行间 <h1 style="font-size: ...
- python 爬虫基础知识一
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 网络爬虫必备知识点 1. Python基础知识2. P ...
- python02
# 字符串学习第二天 # 1.练习len与range for的使用 test=input("请输入") l=len(test) for i in range(0,l): print ...
- The Little Prince-12/07
The Little Prince-12/07 "My little man, where do you come from? What is this ‘where I live,‘ of ...
- QRegExp 正则表达式详解
引言 正则表达式(regular expression)就是用一个“字符串”来描述一个特征,然后去验证另一个“字符串”是否符合这个特征.比如 表达式“ab+” 描述的特征是“一个 'a' 和 任意个 ...
- OSI七层协议与TCP/IP模型
OSI为Open System Interconnection的缩写,意为开放式系统互联,国际标准化组织(ISO,International Organization for Standardizat ...
- Kali系列之Hydra/Medusa mysql密码爆破
hydra hydra -L /home/chenglee/zidian/user.txt -P /home/chenglee/zidian/wordlist.TXT 192.168.137.133 ...