Graph Convolutional Networks

2018-01-16  19:35:17

this Tutorial comes from YouTube Video:https://www.youtube.com/watch?v=0_O8PdZBc5s&t=2097s

之所以这个方面的研究会吸引人,是因为这个东西可以将很多知识联系起来。现实生活中,有很多东西都可以应用的到,如:

上图展示了现有的 CNN 模型,在对图像进行处理时,利用局部的卷积核进行卷积操作时,进行的加权过程。

可以看到,再对每一个像素点进行处理的时候,大致经过如下的几个步骤:

  1. 利用权重 w 和 其近邻像素点,都进行加权;

  2. 将这些加权后的 value,加和处理;

  3. 对得到的结果进行非线性处理;

但是,利用传统的 CNN 模型,无法直接进行 Graph 数据的处理,是因为图像的像素点graph类型的数据 ,这是两种不同 style 的数据

对于 Graph 结构的数据,我们有 顶点 以及 邻接矩阵A

我们希望我们的模型可以训练时间有限,并且 在输入的 graph 改变了的情况下,依然可以使用。

一种比较 naive 的方法就是,直接将邻接矩阵A 和 特征矩阵 X,输入到 NN 中进行训练。

那么,这么做的话,会出现什么问题呢?

1. 参数巨多;

2. 如果 graph 结构发生改变,就需要重新训练了。

GCN with 1-order message passing

GCN 模型的结构如上图所示。该网络的输入是:feature matrix X 和 处理之后的 邻接矩阵 A。

那么这个过程完成了一件什么事情呢???

有了上述的 GCNs 网络,我们可以将其用于半监督的分类问题。

Graph Convolutional Networks (GCNs) 简介的更多相关文章

  1. 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:4 ...

  2. 论文解读 - Composition Based Multi Relational Graph Convolutional Networks

    1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi- ...

  3. 论文解读(DropEdge)《DropEdge: Towards Deep Graph Convolutional Networks on Node Classification》

    论文信息 论文标题:DropEdge: Towards Deep Graph Convolutional Networks on Node Classification论文作者:Yu Rong, We ...

  4. 关于 Graph Convolutional Networks 资料收集

    关于 Graph Convolutional Networks 资料收集 1.  GRAPH CONVOLUTIONAL NETWORKS   ------ THOMAS KIPF, 30 SEPTE ...

  5. 论文笔记之:Semi-supervised Classification with Graph Convolutional Networks

    Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. ...

  6. Semi-Supervised Classification with Graph Convolutional Networks

    Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional netw ...

  7. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (ST-GCN)

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动 ...

  8. Emotion Recognition Using Graph Convolutional Networks

    Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https: ...

  9. How to do Deep Learning on Graphs with Graph Convolutional Networks

    翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网 ...

随机推荐

  1. CNN超参数优化和可视化技巧详解

    https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络 ...

  2. 开源IOT平台

    用于IoT应用程序开发的10大开源软件: 1. DeviceHive DeviceHive基于AllJoyn的Data Art设备,同时也是AllSeen的联盟成员.这一款免费开源机器和机器通信(M2 ...

  3. C++前置声明

    [1]一般的前置函数声明 见过最多的前置函数声明,基本格式代码如下: #include <iostream> using namespace std; void fun(char ch, ...

  4. ETL面试题集锦

    1. What is a logical data mapping and what does it mean to the ETL team? 什么是逻辑数据映射?它对ETL项目组的作用是什么? 答 ...

  5. VPS采用的几种常见技术(OVZ、Xen、KVM)介绍与对比

    很多人看到同样配置的VPS价格相差很大,甚是不理解,其实VPS使用的虚拟技术种类有很多,如OpenVZ.Xen.KVM.Xen和HVM与PV. 在+XEN中pv是半虚拟化,hvm是全虚拟化,pv只能用 ...

  6. 读QT5.7源码(三)Q_OBJECT 和QMetaObject

    Qt meta-object系统基于三个方面:  1.QObject提供一个基类,方便派生类使用meta-object系统的功能:  2.Q_OBJECT宏,在类的声明体内激活meta-object功 ...

  7. <转>jmeter(十三)常见问题及解决方法

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...

  8. How to use Nissan consult 3 plus to check, make key and program?

    How to use Nissan consult 3 plus to test Nissan? Firstly: get one particular Nissan consult 3 plus. ...

  9. 一个六年Java程序员的从业总结:比起掉发,我更怕掉队

    我一直担惊受怕,过去,可能是因为我年轻,但现在,我已经不是那么年轻了,我仍然发现有很多事情让我害怕. 当年纪越来越大后,我开始变得不能加班.我开始用更多的时间和家人在一起,而不是坐在计算机前(尽管这样 ...

  10. 深入理解HashMap+ConcurrentHashMap的扩容策略

    前言 理解HashMap和ConcurrentHashMap的重点在于: (1)理解HashMap的数据结构的设计和实现思路 (2)在(1)的基础上,理解ConcurrentHashMap的并发安全的 ...