Treeland is a country in which there are n towns connected by n - 1 two-way road such that it's possible to get from any town to any other town.

In Treeland there are 2k universities which are located in different towns.

Recently, the president signed the decree to connect universities by high-speed network.The Ministry of Education understood the decree in its own way and decided that it was enough to connect each university with another one by using a cable. Formally, the decree will be done!

To have the maximum sum in the budget, the Ministry decided to divide universities into pairs so that the total length of the required cable will be maximum. In other words, the total distance between universities in k pairs should be as large as possible.

Help the Ministry to find the maximum total distance. Of course, each university should be present in only one pair. Consider that all roads have the same length which is equal to 1.

Input

The first line of the input contains two integers n and k (2 ≤ n ≤ 200 000, 1 ≤ k ≤ n / 2) — the number of towns in Treeland and the number of university pairs. Consider that towns are numbered from 1 to n.

The second line contains 2k distinct integers u1, u2, ..., u2k (1 ≤ ui ≤ n) — indices of towns in which universities are located.

The next n - 1 line contains the description of roads. Each line contains the pair of integers xj and yj (1 ≤ xj, yj ≤ n), which means that the j-th road connects towns xj and yj. All of them are two-way roads. You can move from any town to any other using only these roads.

Output

Print the maximum possible sum of distances in the division of universities into k pairs.

Examples
input
7 2
1 5 6 2
1 3
3 2
4 5
3 7
4 3
4 6
output
6
input
9 3
3 2 1 6 5 9
8 9
3 2
2 7
3 4
7 6
4 5
2 1
2 8
output
9
Note

The figure below shows one of possible division into pairs in the first test. If you connect universities number 1 and 6 (marked in red) and universities number 2 and 5 (marked in blue) by using the cable, the total distance will equal 6 which will be the maximum sum in this example.


  题目大意 给定一个边权都为1的无向连通图,和2k个点,将这2k个点两两进行配对,将每对的距离求和,问最大的距离和是多少?

  首先看在最优的配对方案有没有什么规律,然而发现并没有。

  既然不能快速地搞定最优配对方案,那可以考虑每个点连向父节点的边。

  用f[i][j]表示第i个点,在第i个点的子树内有j个点还没有完成配对对答案的贡献。

  转移是什么?+j。这个诡异的转移肯定有问题。

  由于+j转移对后面的状态没有什么限制,所以开始贪心。。

  显然在i的子树内没有完成配对的点数越多越好,当然要合法,所以就将i子树内被钦定的点数和剩余的被钦定的点数取最小值,然后直接加给答案。

Code

 /**
* Codeforces
* Problem#400B
* Accepted
* Time: 62ms
* Memory: 13480k
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>
#ifdef WIN32
#define Auto "%I64d"
#else
#define Auto "%lld"
#endif
using namespace std;
typedef bool boolean;
#define ll long long
#define smin(_a, _b) _a = min(_a, _b)
#define smax(_a, _b) _a = max(_a, _b)
const signed int inf = (signed) (~0u >> );
const signed ll llf = (signed ll) (~0ull >> ); template<typename T>
inline void readInteger(T& u) {
static char x;
while(!isdigit(x = getchar()));
for(u = x - ''; isdigit(x = getchar()); u = u * + x - '');
} typedef class Edge {
public:
int end;
Edge* next; Edge(int end = , Edge* next = NULL):end(end), next(next) { }
}Edge; typedef class MapManager {
public:
int ce;
Edge **h;
Edge *edge; MapManager() { }
MapManager(int n, int m):ce() {
h = new Edge*[(n + )];
edge = new Edge[(m + )];
memset(h, , sizeof(Edge*) * (n + ));
} void addEdge(int u, int v) {
edge[ce] = Edge(v, h[u]);
h[u] = edge + (ce++);
} void addDoubleEdge(int u, int v) {
addEdge(u, v);
addEdge(v, u);
} Edge* start(int node) {
return h[node];
}
}MapManager; int n, m;
boolean* isspy;
MapManager g; inline void init() {
readInteger(n);
readInteger(m);
m <<= ;
isspy = new boolean[(n + )];
g = MapManager(n, * n);
memset(isspy, false, sizeof(boolean) * (n + ));
for(int i = , x; i <= m; i++) {
readInteger(x);
isspy[x] = true;
}
for(int i = , u, v; i < n; i++) {
readInteger(u);
readInteger(v);
g.addDoubleEdge(u, v);
}
} ll res = ;
int dfs(int node, int fa) {
int rt = isspy[node];
for(Edge* it = g.start(node); it; it = it->next) {
if(it->end == fa) continue;
rt += dfs(it->end, node);
}
res += min(m - rt, rt);
return rt;
} inline void solve() {
dfs(, );
printf(Auto, res);
} int main() {
init();
solve();
return ;
}

Codeforces 700B Connecting Universities - 贪心的更多相关文章

  1. codeforces 700B Connecting Universities 贪心dfs

    分析:这个题一眼看上去很难,但是正着做不行,我们换个角度:考虑每条边的贡献 因为是一棵树,所以一条边把树分成两个集合,假如左边有x个学校,右边有y个学校 贪心地想,让每条边在学校的路径上最多,所以贡献 ...

  2. Codeforces 701E Connecting Universities 贪心

    链接 Codeforces 701E Connecting Universities 题意 n个点的树,给你2*K个点,分成K对,使得两两之间的距离和最大 思路 贪心,思路挺巧妙的.首先dfs一遍记录 ...

  3. Codeforces 700B Connecting Universities(树形DP)

    [题目链接] http://codeforces.com/problemset/problem/700/B [题目大意] 给出 一棵n个节点的树, 现在在这棵树上选取2*k个点,两两配对,使得其配对的 ...

  4. CodeForces 700B Connecting Universities

    统计每一条边的贡献,假设$u$是$v$的父节点,$(u,v)$的贡献为:$v$下面大学个数$f[v]$与$2*k-f[v]$的较小值. #pragma comment(linker, "/S ...

  5. Codeforces Round #364 (Div. 2) E. Connecting Universities

    E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  6. Codeforces Round #364 (Div. 2) E. Connecting Universities (DFS)

    E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  7. codeforces 701E E. Connecting Universities(树的重心)

    题目链接: E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes i ...

  8. codeforces 704B - Ant Man 贪心

    codeforces 704B - Ant Man 贪心 题意:n个点,每个点有5个值,每次从一个点跳到另一个点,向左跳:abs(b.x-a.x)+a.ll+b.rr 向右跳:abs(b.x-a.x) ...

  9. Connecting Universities

    Connecting Universities Treeland is a country in which there are n towns connected by n - 1 two-way ...

随机推荐

  1. undefined reference 问题各种情况分析

    扒自网友文章 关于undefined reference这样的问题,大家其实经常会遇到,在此,我以详细地示例给出常见错误的各种原因以及解决方法,希望对初学者有所帮助. 1.  链接时缺失了相关目标文件 ...

  2. 462. 最少移动次数使数组元素相等 II

    给定一个非空整数数组,找到使所有数组元素相等所需的最小移动数,其中每次移动可将选定的一个元素加1或减1. 您可以假设数组的长度最多为10000. 例如: 输入: [1,2,3] 输出: 2 说明: 只 ...

  3. c# 集合中有数字、字符的Orderby排序

    string[] things= new string[] { "105", "101", "102", "103", ...

  4. sql server 中DateName()函数及DatePart()函数

    Datepart():返回代表指定日期的指定日期部分的整数 语法:Datepart(datepart,date)  返回类型:int DateName():返回代表指定日期的指定日期部分的字符串 语法 ...

  5. Java -- 深入浅出GC自动回收机制

    1,去年开春去美团和58同城面试的时候第一个问题基本上都是来说说 Java GC机制,当时年轻的我也很耿直,直接说不会,现在想想还是当时年轻啊.刚好这段时间被各大论坛的面试题刷屏,见到最多的也是也是这 ...

  6. js原型链的说明

    首先需要明确的是:只有对象有__proto__属性,而函数只有prototype属性,没有__proto__属性,函数的原型有一个constructor属性,指向的是函数本身! Function是Ob ...

  7. python - 6. Defining Functions

    From:http://interactivepython.org/courselib/static/pythonds/Introduction/DefiningFunctions.html Defi ...

  8. xlrd、xlwt

    一个公司内,销售或者人事都是使用excel来记录员工的信息,所以介绍可操作excel文件的xlrd.xlwt模块. 其中xlrd模块实现对excel文件内容读取,xlwt模块实现对excel文件的写入 ...

  9. 大数据权限管理工具 Apache Ranger 初识

    资料参考: Apache Ranger – Introduction http://ranger.apache.org/ 阿里云 Ranger简介 Apache Ranger初识 - 阿里云 大数据权 ...

  10. Java并发编程1--synchronized关键字用法详解

    1.synchronized的作用 首先synchronized可以修饰方法或代码块,可以保证同一时刻只有一个线程可以执行这个方法或代码块,从而达到同步的效果,同时可以保证共享变量的内存可见性 2.s ...