题目链接

先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)?

假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标<1的石子数和-下标>1的石子数和\)。

如果它为负,那么把移到\(1\)的代价加上它,令集合点变为\(2\)...

这样一直改变集合点,直到 \(下标<p的石子数和 \geq 下标>p的石子数和\)。那么移到\(p\)就是最优的。

这样感觉很对。怎么证明?

我们发现式子左边其实就是前缀和,右边是后缀和。因为石子数非负,所以随着\(p\)移动,前缀和是递增的,后缀和递减。

即如果出现 \(前缀和 \geq 后缀和\) 的情况,前缀和就永远大于等于后缀和了。

那么我们对\([l,r]\)的所有数都进行这个贪心。

首先我们要算出所有数集合到1的代价和。这个可以用数位DP算出(递推数的个数,用个数求和)。

然后枚举\(p=2\sim n\)位,我们可以求 以\(p\)为分界,前缀数位和 小于 后缀数位和 且 在\([0,r]\) 的数的个数。其中每个数会减少的代价就是\(前缀和-后缀和\)。

因为数位和最多差不多是230,可以直接枚举这两个状态。同样数位DP。

\(f[i][j][k][0/1]\)表示当前到第\(i\)位,总数位和为\(j\),\(p\)位之前的数位和为\(k\),是否到上界,的数的个数。

另外还可以直接减掉\(k\)那一维。。

记忆化就好写的多了(还快)。

//49592kb	404ms
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=52,M=245; int A[N];
LL g[N][2],sum[N][2],f[N][M][M][2]; LL Calc(LL x,int base)
{
int n=0;
for(; x; x/=base) A[++n]=x%base;
std::reverse(A+1,A+1+n);// memset(g,0,sizeof g), memset(sum,0,sizeof sum);
g[0][1]=1;
for(int i=0; i<n; ++i)//好像还是从0方便。。
{
LL v=g[i][1]; int ai=A[i+1];
g[i+1][1]+=v, sum[i+1][1]=sum[i][1]+v*i*ai;
for(int j=0; j<ai; ++j) g[i+1][0]+=v, sum[i+1][0]+=sum[i][1]+v*i*j;
v=g[i][0];
for(int j=0; j<base; ++j) g[i+1][0]+=v, sum[i+1][0]+=sum[i][0]+v*i*j;
} LL ans=sum[n][0]+sum[n][1];
for(int p=1; p<n; ++p)
{
f[0][0][0][1]=1;
for(int i=0; i<n; ++i)
{
int ai=A[i+1];
if(i+1<=p)
{
LL v;
for(int j=0,lim=i*(base-1); j<=lim; ++j)
{
if(v=f[i][j][j][1])//好不直观。。
{
f[i+1][j+ai][j+ai][1]+=v;//+=
for(int k=0; k<ai; ++k) f[i+1][j+k][j+k][0]+=v;
}
if(v=f[i][j][j][0])
for(int k=0; k<base; ++k) f[i+1][j+k][j+k][0]+=v;
}
}
else
{
LL v;
for(int j=0,lim=i*(base-1); j<=lim; ++j)
for(int k=0,lim2=p*(base-1); k<=lim2; ++k)
{
if(v=f[i][j][k][1])
{
f[i+1][j+ai][k][1]+=v;
for(int l=0; l<ai; ++l) f[i+1][j+l][k][0]+=v;
}
if(v=f[i][j][k][0])
for(int l=0; l<base; ++l) f[i+1][j+l][k][0]+=v;
}
}
}
for(int i=0,lim=p*(base-1); i<=lim; ++i)//pre
for(int j=i+1,lim2=n*(base-1); i+j<=lim2; ++j)//suf
ans+=(i-j)*(f[n][i+j][i][0]+f[n][i+j][i][1]);
for(int i=1; i<=n; ++i)
for(int j=0,lim=i*(base-1); j<=lim; ++j)
for(int k=0,lim2=p*(base-1); k<=lim2; ++k)
f[i][j][k][0]=0, f[i][j][k][1]=0;
}
return ans;
} int main()
{
LL L,R; int K; scanf("%lld%lld%d",&L,&R,&K);
printf("%lld\n",Calc(R,K)-Calc(L-1,K));
return 0;
}

BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)的更多相关文章

  1. bzoj 3598: [Scoi2014]方伯伯的商场之旅【数位dp】

    参考了这个http://www.cnblogs.com/Artanis/p/3751644.html,好像比一般方法好写 大概思想就是先计算出把所有石子都合并到1位置的代价,这样显然有一些是不优的,然 ...

  2. bzoj 3598 [Scoi2014]方伯伯的商场之旅——数位dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 TJ:https://www.cnblogs.com/Zinn/p/9351218.h ...

  3. BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)

    看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...

  4. 洛谷P3286 [SCOI2014]方伯伯的商场之旅

    题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...

  5. [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)

    3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 449  Solved: 254[Submit][Sta ...

  6. 【bzoj3598】: [Scoi2014]方伯伯的商场之旅

    Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...

  7. [SCOI2014]方伯伯的商场之旅

    Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...

  8. 【数位DP】SCOI2014 方伯伯的商场之旅

    题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...

  9. 【bzoj3598】 Scoi2014—方伯伯的商场之旅

    http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...

随机推荐

  1. 单页应用 WebApp SPA 骨架 框架 路由 页面切换 转场

    这里收录三个同类产品,找到他们花了我不少时间呢. 张鑫旭写的mobilebone自述:mobile移动端,PC桌面端页面无刷新过场JS骨架,简单.专注!http://www.zhangxinxu.co ...

  2. 【转】Python之文件读写

    [转]Python之文件读写 本节内容: I/O操作概述 文件读写实现原理与操作步骤 文件打开模式 Python文件操作步骤示例 Python文件读取相关方法 文件读写与字符编码 一.I/O操作概述 ...

  3. Paramiko 操作远端时无法切换目录的问题

    最近在用Paramiko 开发一款远程测试调试框架,结果发现目录怎么都无法切换,查了下原因,在http://bbs.chinaunix.net/thread-1675446-1-1.html看到了 P ...

  4. oracle instantclient_11_2 配置文件tnsnames.ora

    文件所在位置(不同版本位置可能不同): oracle\product\10.2.0\client_1\NETWORK\ADMIN\tnsnames.ora WDDB = (DESCRIPTION = ...

  5. Jenkins实现定时、顺序编译

    1      Jenkins实现定时.顺序编译 l  Jenkins 编译流程:更新代码,编译公共服务,编译普通服务(普通服务依赖于公共服务).以下图为例,首先执行 update,再执行 icto_c ...

  6. Spring Boot学习笔记 - 整合Swagger2自动生成RESTful API文档

    1.添加Swagger2依赖 在pom.xml中加入Swagger2的依赖 <!--swagger2--> <dependency> <groupId>io.spr ...

  7. 关于java中生产者消费者模式的理解

    在说生产者消费者模式之前,我觉得有必要理解一下 Obj.wait(),与Obj.notify()方法.wait()方法是指在持有对象锁的线程调用此方法时,会释放对象锁,同时休眠本线程.notify() ...

  8. XHR简介

    在XHR诞生前,网页要获取客户端和服务器的任何状态更新,都需要刷新一次,在XHR诞生后就可以完全通过JS代码异步实现这一过程.XHR的诞生也使最初的网页制作转换为开发交互应用,拉开了WEB2.0的序幕 ...

  9. WAP网页中点击链接直接拨打电话的方法

    主要方法有两种: 第一种: 这种也是最简单的. 示例代码: <a href="tel:+18790853577">点击拨打</a> 第二种: <a h ...

  10. RzPageControl Tab拖拽 移动