CODEVS.3990.中国余数定理2(CRT)
题目链接
颓了一天 写个模板吧。。
Chinese_Remainder_Theorem: MashiroSky、远航之曲
#include <cstdio>
#include <cctype>
#define gc() getchar()
typedef long long LL;
const int N=13;
LL n,L,R,B[N],m[N];
inline LL read()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
//void Exgcd(LL a,LL b,LL &x,LL &y)
//{
// if(!b) x=1,y=0;
// else {
// Exgcd(b,a%b,x,y);
// LL t=x; x=y, y=t-a/b*y;
// }
//}
void Exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) x=1, y=0;
else Exgcd(b,a%b,y,x), y-=a/b*x;
}
void CRT()
{
LL M=1,res=0,x,y,Mi,ans=0,Min=0;
for(int i=1; i<=n; ++i) M*=m[i];
for(int i=1; i<=n; ++i)
{
Mi=M/m[i], Exgcd(Mi,m[i],x,y);
x=(x%m[i]+m[i])%m[i];
res+=B[i]*Mi*x;
}
res%=M;
if(!res) res=M;
if(res<=R) ans=(R-res)/M+1;//[res,R]中解的个数 //res就是最小正整数解了,>R显然[L,R]无解(L,R>0)
if(res<=L) ans-=(L-res)/M+1;//[res,L](res<=L)中解的个数 注意这里=L也要计算(减掉),因为下一行要特判边界L的解
if(!((L-res)%M)) ++ans;//边界L的解
if(ans)
if(L<=res) Min=res;//Min=res-(res-L)/M*M;//res就已是最小的解
else /*if(res<L)*/ Min=res+((L-res-1)/M+1)*M;//ans是解的个数不是要运算的数!
printf("%lld\n%lld",ans,Min);
}
int main()
{
n=read(),L=read(),R=read();
for(int i=1; i<=n; ++i) m[i]=read(),B[i]=read();
CRT();
return 0;
}
CODEVS.3990.中国余数定理2(CRT)的更多相关文章
- Codevs 3990 中国余数定理 2
3990 中国余数定理 2 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 白银 Silver 传送门 题目描述 Description Skytree神犇最近在研究中国博大精深的数学. ...
- 【codevs3990】中国余数定理2
[题目描述]Skytree神犇最近在研究中国博大精深的数学.这时,Sci蒟蒻前来拜访,于是Skytree给Sci蒟蒻出了一道数学题:给定n个质数,以及k模这些质数的余数.问:在闭区间[a,b]中,有多 ...
- RSA-CRT leaks__因使用中国余数定理计算RSA所引起的私钥泄露
在heartbleed[1]漏洞后,很多用户打开了PFS[2]功能.但很不幸,之后RedHat又报告出在多个平台上存在RSA-CRT导致的密钥泄露[3]. 中国余数定理(CRT)常被用在RSA的计算中 ...
- 中国余数定理 2(codevs 3990)
题目描述 Description Skytree神犇最近在研究中国博大精深的数学. 这时,Sci蒟蒻前来拜访,于是Skytree给Sci蒟蒻出了一道数学题: 给定n个质数,以及k模这些质数的余数.问: ...
- 中国余数定理 1(codevs 3040)
题目描述 Description 摘自算法导论...... 找出第k个被3,5,7除的时候,余数为2,3,2的数: 输入描述 Input Description 一个数k. 输出描述 Output D ...
- Codevs 3990 [中国剩余定理]
模板题 注意如何得到[a,b]区间范围内的解 #include <iostream> #include <cstdio> #include <cstring> #i ...
- 「中国剩余定理CRT」学习笔记
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...
- 中国剩余定理CRT(孙子定理)
中国剩余定理 给出以下的一元线性同余方程组: $\Large(s):\left\{\begin{aligned}x\equiv a_1\ (mod\ m_1)\\x\equiv a_2\ (mod\ ...
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
随机推荐
- Hard Negative Mning
对于hard negative mining的解释,引用一波知乎: 链接:https://www.zhihu.com/question/46292829/answer/235112564来源:知乎 先 ...
- 用python查看windows事件日志的方法(待后续研究)
#coding=utf8 import copy import ctypes from ctypes import byref, POINTER, cast, c_uint64, c_ulong, c ...
- 解读使用Daisy-chain(菊花链)方式筛选一定范围内素数的代码
go version go1.11 windows/amd64 本文为解读 参考链接1 中的 菊花链 一节 的示例程序,此程序和 参考链接2 中代码有些类似:前者有范围,后者是无限循环.清楚了 参考链 ...
- viewpager显示图片的Adapter
package com.ming.chiye.yishanghorse.Adapter; import android.content.Context; import android.graphics ...
- 面向对象编程其实很简单——Python 面向对象(初级篇)
出处:http://www.cnblogs.com/wupeiqi/ 概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函 ...
- Oracle数据库错误大全
ORA-00001: 违反唯一约束条件 (.)ORA-00017: 请求会话以设置跟踪事件ORA-00018: 超出最大会话数ORA-00019: 超出最大会话许可数ORA-00020: 超出最大进程 ...
- JavaScript常见的真值
值 说明 var a =true 值等于true: var a = 1 非0的数字 var a =“hello” 有内容的字符串 var a=20/5 运算结果非0 var a='true' 有内容 ...
- 《剑指offer》-孩子们的游戏(圆圈中最后剩下的数)
每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指定一个数m ...
- hdu 1757 和1005差不多 (矩阵快速幂)
If x < 10 f(x) = x.If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-1 ...
- Spring的控制反转和依赖注入
Spring的官网:https://spring.io/ Struts与Hibernate可以做什么事? Struts, Mvc中控制层解决方案 可以进行请求数据自动封装.类型转换.文件上传.效验… ...