机器学习ML策略
1、为什么是ML策略
例如:识别cat分类器的识别率是90%,怎么进一步提高识别率呢?
想法:
(1)收集更多数据
(2)收集更多的多样性训练样本
(3)使用梯度下降训练更长时间
(4)尝试Adam代替梯度下降
(5)尝试更大的网络
(6)尝试更小的网络
(7)尝试dropout
(8)尝试L2正则化
(9)修改网络架构(激励函数,隐含层单元数目)
2、正交化
正交化(正交性)是一种系统设计属性,它可以确保修改算法的一个指令或者组成部分将不会对系统的其他组成部分产生或者传播副作用。使得核查算法变得容易,减少测试和开发算法的时间。
一个好的机器学习算法按算法流程需要满足(正交化):
(1)在训练集中表现好(接近人类)。如果不好,可换大型网络或者更换优化算法
(2)在验证集中表现好。如果不好,可尝试正则化或者使用大一点规模的训练集
(3)在测试集中表现好。如果不好,可尝试大一点的验证集
(4)在真实世界中表现好。如果不好,测试集不正确或者代价函数有问题
3、单一数字评估指标
混淆矩阵:
True Positive(TP):正类预测为正类
True Negtive(TN):负类预测为负类
False Positive(FP):负类预测为正类(误报)
False Negative(FN):正类预测为负类(漏报)
Positive | Negative | |
True | TP | TN |
False | FP | FN |
精确率(precision):针对预测结果而言的,它表示的是预测为正的样本中有多少是对的
P = TP/(TP+FP)
准确率(accuracy):ACC = (TP+TN)/(TP+TN+FP+FN)
召回率(recall):针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确的
R = TP/(TP+FN)
F1值:2/F1 = 1/P +1/R ---> F1 = 2TP/(2TP+FP+FN)
在信息检索领域,精确率和召回率又被称为查准率和查全率,
机器学习ML策略的更多相关文章
- [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...
- 机器学习 - ML
CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computationa ...
- 机器学习 ML.NET 发布 1.0 RC
ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架(Windows,Linux,macOS),通过使用ML.NET,.NET开发人员可以利用他们现有的工具和技能组,为情感分析,推荐,图像分 ...
- 机器学习 - ML + 深度学习 - DL
机器学习 CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computa ...
- .NET机器学习 ML.NET 1.4预览版和模型生成器更新
ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架. ML.NET 还包括Model Builder (一个简单的UI工具)和 CLI ,使用自动机器学习(AutoML)构建自定义 ...
- 认识:人工智能AI 机器学习 ML 深度学习DL
人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识. ...
- PCB 机器学习(ML.NET)初体验实现PCB加投率预测
使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:P ...
- 吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记
第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法, ...
- DeepLearning.ai学习笔记(三)结构化机器学习项目--week1 机器学习策略
一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪 ...
随机推荐
- 5. 多重背包问题 II 【用二进制优化】
多重背包问题 II 描述 有 NN 种物品和一个容量是 VV 的背包. 第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi. 求解将哪些物品装入背包,可使物品体积总和不超过背 ...
- smbclient和mount -t cifs共享win的共享文件夹? autocad小记
插入U盘没有反应? 首先,打开设备管理器, 发现usb大容量设备为黄色感叹号 其次, 将这个usb大容量设备先卸载, 然后点击"自动扫描硬件变化",就可以重新自动安装usb的驱动. ...
- CF983B XOR-pyramid
设\(xorx[l][r]\)表示题目中\(f(l,r)\)的值,则可以得出 \[ xorx[i][j]=xorx[i][j-1] \oplus xorx[i+1][j] \] 设\(maxx[l][ ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T1(找规律)
就是找一下规律 但是奈何昨天晚上脑子抽 推错了一项QwQ 然后重新一想 A掉了QwQ #include <cstdio> #include <algorithm> #inclu ...
- 案例:8,64,256都是2的阶次方数(8是2的3次方),用Java编写程序来判断一个整数是不是2的阶次方数。
如果一个数是2的阶次方数,则它的二进制数的首位一般是1,后面全为0.比如8:1000,64:1000000,如果将这个数减1后再作与&运算,则应该全为0,(x&(x-1)==0&am ...
- Qt实在太漂亮了
我很久之前就想用Qt,无奈对c++不熟悉,学习代价太大.想使用pyqt曲线救国,搞了好久的环境后放弃了.昨天又看了个很漂亮的qt例子,太漂亮了,让我很想进圈子.就从现在开始吧!!
- js点击显示隐藏
这个栗子…… 可以不吃,先预设一个变量表示div的状态,例子中0是显示的,一开始是隐藏的.当点击时判断状态是显示0的还是隐藏1的:如果是显示的就把div隐藏,再把变量改变为1.再次点击时把会判断到变量 ...
- 1:httpd-2.2基础
在配置httpd主配置文件时,应该先记得备份一下: #cd /etc/httpd/conf/ #cp httpd.conf{,.bak} #vim /etc/httpd/conf/httpd.conf ...
- jquery事件重复绑定的几种解决方法 (二)
防止事件重复绑定共有4种方法: bind().unbind()方法 live().die()方法 off().on()方法 one()方法 一.bind().unbind()方法 bind();绑定事 ...
- Oracle Initialzation error instantclient_11_2 32位客户端问题
本地安装完oracle 用PLSql 连接是一堆的问题,折腾一上午终于解决了 下载一个 instantclient_11_2 32位的oracle客户端.放在oracle安装目录product下,在把 ...