1、为什么是ML策略

例如:识别cat分类器的识别率是90%,怎么进一步提高识别率呢?

想法:

(1)收集更多数据

(2)收集更多的多样性训练样本

(3)使用梯度下降训练更长时间

(4)尝试Adam代替梯度下降

(5)尝试更大的网络

(6)尝试更小的网络

(7)尝试dropout

(8)尝试L2正则化

(9)修改网络架构(激励函数,隐含层单元数目)

2、正交化

正交化(正交性)是一种系统设计属性,它可以确保修改算法的一个指令或者组成部分将不会对系统的其他组成部分产生或者传播副作用。使得核查算法变得容易,减少测试和开发算法的时间。

一个好的机器学习算法按算法流程需要满足(正交化):

(1)在训练集中表现好(接近人类)。如果不好,可换大型网络或者更换优化算法

(2)在验证集中表现好。如果不好,可尝试正则化或者使用大一点规模的训练集

(3)在测试集中表现好。如果不好,可尝试大一点的验证集

(4)在真实世界中表现好。如果不好,测试集不正确或者代价函数有问题

3、单一数字评估指标

混淆矩阵:

True Positive(TP):正类预测为正类

True Negtive(TN):负类预测为负类

False Positive(FP):负类预测为正类(误报)

False Negative(FN):正类预测为负类(漏报)

  Positive Negative
True TP TN
False FP FN

精确率(precision):针对预测结果而言的,它表示的是预测为正的样本中有多少是对的

P = TP/(TP+FP)

准确率(accuracy):ACC = (TP+TN)/(TP+TN+FP+FN)

召回率(recall):针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确的

R = TP/(TP+FN)

F1值:2/F1 = 1/P +1/R      --->       F1 = 2TP/(2TP+FP+FN)

在信息检索领域,精确率和召回率又被称为查准率查全率

查准率=检索出的相关信息量 / 检索出的信息总量
查全率=检索出的相关信息量 / 系统中的相关信息总量
 

机器学习ML策略的更多相关文章

  1. [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)

    引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...

  2. 机器学习 - ML

    CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computationa ...

  3. 机器学习 ML.NET 发布 1.0 RC

    ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架(Windows,Linux,macOS),通过使用ML.NET,.NET开发人员可以利用他们现有的工具和技能组,为情感分析,推荐,图像分 ...

  4. 机器学习 - ML + 深度学习 - DL

    机器学习 CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computa ...

  5. .NET机器学习 ML.NET 1.4预览版和模型生成器更新

    ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架. ML.NET  还包括Model Builder  (一个简单的UI工具)和  CLI  ,使用自动机器学习(AutoML)构建自定义 ...

  6. 认识:人工智能AI 机器学习 ML 深度学习DL

    人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识. ...

  7. PCB 机器学习(ML.NET)初体验实现PCB加投率预测

    使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:P ...

  8. 吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记

    第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法, ...

  9. DeepLearning.ai学习笔记(三)结构化机器学习项目--week1 机器学习策略

    一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪 ...

随机推荐

  1. Restful framework【第五篇】解析器

    基本使用 -解析器 -源码从request.data -全局配置 -'DEFAULT_PARSER_CLASSES':['rest_framework.parsers.JSONParser'], -局 ...

  2. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  3. 使用Numpy实现卷积神经网络(CNN)

    import numpy as np import sys def conv_(img, conv_filter): filter_size = conv_filter.shape[1] result ...

  4. 防止网站检测出Selenium的window.navigator.webdriver属性

    只需在Chromeoptions对象中添加一个属性即可解决 import time from selenium.webdriver import Chrome, ChromeOptions optio ...

  5. HashMap的实现原理-----哈希讲解

    哈希,英文名Hash.他就像是一个隔壁家的孩子一样,伴随着码工们的成长.听到他们的名字,我们都觉得很高大上. 在写程序的时候,一般我们都是这样被教育的:这个事情搞不定?用哈希呀! 在面试的时候,一般是 ...

  6. Appium典型问题处理

    1. http://ask.testfan.cn/article/902 Appium 服务端安装-windows2. http://ask.testfan.cn/article/1078 最新版本a ...

  7. MD5加密与Hash加密

    一.Md5加密 MD5算法具有以下特点: 1.压缩性:任意长度的数据,算出的MD5值长度都是固定的. 2.容易计算:从原数据计算出MD5值很容易. 3.抗修改性:对原数据进行任何改动,哪怕只修改1个字 ...

  8. Systemd初始化进程/RHEL 6系统中System V init命令与RHEL 7系统中systemctl命令的对比

    Linux操作系统的开机过程是这样的,即从BIOS开始,然后进入Boot Loader,再加载系统内核,然后内核进行初始化,最后启动初始化进程.初始化进程作为Linux系统的第一个进程,它需要完成Li ...

  9. “ORA-06550: 第 1 行, 第 7 列”解决方法

    将本机能正常运行的维修生产日志代码发布到公司内测环境里无法正常运行,报错如下: execute() - pls–QuartzJob.java–quartzjob 开始执行! java.sql.SQLE ...

  10. ajax操作json的三种方式

    一. 什么是json? 1. JSON是一种轻量级的数据交换格式 2. JSON 可以将 JavaScript 对象中表示的一组数据转换为字符串,然后就可以在网络或者程序之间轻松地传递这个字符串,并在 ...