题意:求本质不同的回文子串的和

题解:先构造pam,然后根据pam的原理(ch表示在该节点表示的回文串两侧加上该字符)对于每个节点维护一个表示该节点字符串的值,加起来即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define LL long long
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=2000000+10,maxn=1000000+10,inf=0x3f3f3f3f; struct PAM{
int ch[N][10],fail[N],cnt[N],num[N],len[N],s[N],le[N];
ll val[N],ans[N];
int last,n,p;
int newnode(int w,int c)
{
for(int i=0;i<10;i++)ch[p][i] = 0;
cnt[p] = num[p] = 0;
len[p] = w;val[p]=c;
return p++;
}
void init()
{
p = last = n = 0;
newnode(0,0);
newnode(-1,0);
s[n] = -1;
fail[0] = 1;
}
int getfail(int x)
{
while(s[n-len[x]-1] != s[n]) x = fail[x];
return x;
}
void add(int c)
{
s[++n] = c;
int cur = getfail(last);
if(!ch[cur][c]){
int now = newnode(len[cur]+2,c);
fail[now] = ch[getfail(fail[cur])][c];
ch[cur][c] = now;
num[now] = num[fail[now]] + 1;
}
last = ch[cur][c];
cnt[last]++;
}
void cal()
{
ll pp=0;
for(int i=0;i<p;i++)
{
for(int j=0;j<10;j++)if(ch[i][j])
{
if(ans[i])ans[ch[i][j]]=(ans[i]*10%mod+val[ch[i][j]]+qp(10,1+le[i])*val[ch[i][j]]%mod)%mod,
le[ch[i][j]]=le[i]+2;
else
{
if(len[i]&1)ans[ch[i][j]]=val[ch[i][j]],le[ch[i][j]]=1;
else ans[ch[i][j]]=(val[ch[i][j]]+val[ch[i][j]]*10%mod)%mod,le[ch[i][j]]=2;
}
}
pp+=ans[i];if(pp>=mod)pp-=mod;
}
printf("%lld\n",pp);
}
}pam;
char s[N];
int main()
{
pam.init();
scanf("%s",s);
int n=strlen(s);
for(int i=0;i<n;i++)pam.add(s[i]-'0');
pam.cal();
return 0;
}
/******************** ********************/

ACM-ICPC 2018 南京赛区网络预赛Skr的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  3. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  4. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  5. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  6. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  7. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  8. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  9. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

随机推荐

  1. js插入排序

    插入排序 平均时间复杂度O(n*n) 最差情况O(n*n) 最好情况O(n) 空间复杂度O(1) 稳定性:稳定 function insertSort (arr) { var len = arr.le ...

  2. (转载)Unity3D连接本地或局域网MySQL数据库

    准备工作: 1.打开 Unity3D 安装目录,到这个路径下 Editor > Data > Mono > lib > mono > 2.0 拷贝出下图的五个动态链接库, ...

  3. 洛谷P2362 围栏木桩----dp思路

    在翻dp水题的时候找到的有趣的题0v0 原文>>https://www.luogu.org/problem/show?pid=2362<< 题目描述 某农场有一个由按编号排列的 ...

  4. 几个C++ online test 网站

    http://www.mycppquiz.com/list.php http://www.codelect.net/TestDetails/Cplusplus-Senior-Level-Test ht ...

  5. 利用mysql行级锁创建数据库主键id

    存储函数: CREATE FUNCTION `getSerialNo`(`serialName` VARCHAR(50), `skip` INT) RETURNS bigint(20) COMMENT ...

  6. NPOI导入导出EXCEL通用类,可直接使用在WinForm项目中

    由于XSSFWorkbook类型的Write方法限制,Write完成后就自动关闭流数据,所以无法很好的支持的Web模式,网上目前也未找到好的解决方案. 注意:若直接使用在WinForm项目中,必需先下 ...

  7. 【Java】【问题】

    [log4j:WARN No appenders could be found for logger 解决方案] [解决] 我们在使用Log4j的时候,总是出现: log4j:WARN No appe ...

  8. 理解 Redis(9) - Publish Subscribe 消息订阅

    在窗口1开通一个名为 redis 的通道: 127.0.0.1:6379> SUBSCRIBE redis Reading messages... (press Ctrl-C to quit) ...

  9. _itemmod_strengthen_item

    `enchant_id`升级后的附魔Id `prev_enchant_id` 上级附魔Id `description` 描述,出现在菜单中 `enchantReqId`升级附魔效果的消耗模板 `rem ...

  10. 【六】php 错误异常处理

    错误异常处理 概念:代码在try代码块被调用执行,catch代码块捕获异常 异常需要手动抛出 throw new Exception (‘message’,code) throw将出发异常处理机制 在 ...