Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7522 | Accepted: 3988 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.
Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).
Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta
in Figure 6(a) has three edges whose weights are 3, 6 and 7. The
largest weight is 7 and the smallest weight is 3 so that the slimness of
the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td
shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can
easily see the slimness of any other spanning tree is greater than or
equal to 1, thus the spanning tree Td in Figure 6(d) is one of the
slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The
input consists of multiple datasets, followed by a line containing two
zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every
input item in a dataset is a non-negative integer. Items in a line are
separated by a space. n is the number of the vertices and m the number
of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E)
is simple, that is, there are no self-loops (that connect the same
vertex) nor parallel edges (that are two or more edges whose both ends
are the same two vertices).
Output
For
each dataset, if the graph has spanning trees, the smallest slimness
among them should be printed. Otherwise, −1 should be printed. An output
should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
#include <stdio.h>
#include <algorithm> using namespace std; #define MAXN 6000
#define INF 0x3f3f3f3f struct Edge
{
int u,v;
int w;
} edge[MAXN]; int father[MAXN]; int Find_Set (int x)
{
if(x!=father[x])
father[x] = Find_Set(father[x]);
return father[x];
} int n,m;
bool cmp(Edge a,Edge b)
{
return a.w<b.w;
} int main()
{
//freopen("input.txt","r",stdin);
while(scanf("%d%d",&n,&m),n)
{
bool flag = false; for(int i=; i<m; i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge,edge+m,cmp);
//for(int i=0; i<m; i++)
//printf("%d ",edge[i].w);
// puts(""); int ans = INF;
int i,j;
for(i=; i<m; i++)
{
for(int i=; i<=n; i++)
father[i] = i;
int cnt = ;
for(j=i; j<m; j++)
{
int fx = Find_Set(edge[j].u);
int fy = Find_Set(edge[j].v);
if(fx==fy)
continue; father[fy] = fx;
cnt++;
if(cnt==n-)
{
flag = true;
break;
}
}
if(cnt==n-)
ans = min(ans,edge[j].w-edge[i].w);
}
if(flag)
printf("%d\n",ans);
else puts("-1");
}
return ;
}
Poj(3522),UVa(1395),枚举生成树的更多相关文章
- POJ 3522 最小差值生成树(LCT)
题目大意:给出一个n个节点的图,求最大边权值减去最小边权值最小的生成树. 题解 Flash Hu大佬一如既往地强 先把边从小到大排序 然后依次加入每一条边 如果已经连通就把路径上权值最小的边删去 然后 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- UVa 1395 苗条的生成树(Kruskal+并查集)
https://vjudge.net/problem/UVA-1395 题意: 给出一个n结点的图,求苗条度(最大边减最小边的值)尽量小的生成树. 思路: 主要还是克鲁斯卡尔算法,先仍是按权值排序,对 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)
思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...
- POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)
题目链接:UVA 811 Description Once upon a time, in a faraway land, there lived a king. This king owned a ...
- Poj 3522 最长边与最短边差值最小的生成树
题意: 让你求一颗生成树,使得最长边和最短边长度差值最小. 思路: 额!!!感觉这个思路会超时,但是ac了,暂时没什么别的好思路,那么就先说下这个思路,大牛要是有好的思路希望能在 ...
随机推荐
- linux下gcc默认搜索头文件及库文件的路径
一.头文件gcc 在编译时如何去寻找所需要的头文件:※所以header file的搜寻会从-I开始※然后找gcc的环境变量 C_INCLUDE_PATH,CPLUS_INCLUDE_PATH,OBJC ...
- csuoj 1111: 三家人
acm.csu.edu.cn/OnlineJudge/problem.php?id=1111 1111: 三家人 Time Limit: 1 Sec Memory Limit: 128 MBSubm ...
- override 与 overdown 的区别
重写与重载的区别 1. 重载是方法的名称相同.参数或参数类型不同,进行多次重载以适应不同的需要 2. 重写是进行基类中函数的重写.为了适应需要.
- linux 修改端口限制
1.显示当前临时端口的范围:一般情形下:linux临时端口号范围是(32768,61000) sysctl net.ipv4.ip_local_port_range 或 cat ...
- 夺命雷公狗---TP商城----TP之样式和特效以及图片引入---2
---恢复内容开始--- 刚才见到笑脸了,那么下一步就到我们的shop目录下创建一个Admin的目录了,然后将Home目录里面的东西全部都拉进去即可 然后我们回到shop\Home\View目录下创建 ...
- Logic Bist Arch
一般现在多用的都是offline BIST的架构,可以分为4大类: 1)those assume no special structure to the circuit under test; 2)t ...
- SSIS 关于并发的两个设置
1.MaxConcurrentExecutables(包级别的并发度控制) MaxConcurrentExecutables, a package level property in SSIS det ...
- Date() 及其 如何验证用户输入的日期是合法的
1.var someDate = new Date(Date.parse("May 25, 2004")); <=> var someDate = new Dat ...
- 删除项目中的.svn文件
删除项目中的.svn文件 1.创建个文件,名字改为kill-svn-folders.reg 2.把下面的代码考进去,每一行前面不要留空, Windows Registry Editor Version ...
- innodb内部的并发线程
1. innodb_thread_concurrency innodb有一系列的计数器来统计和控制内部的工作线程.其中最重要的一个是innodb_thread_concurrency,和它相关的inn ...