Check the difficulty of problems
Check the difficulty of problems
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5830 Accepted: 2542
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2
0.9 0.9
1 0.9
0 0 0
Sample Output
0.972
概率DP.
题意:有t支队伍,m道题,冠军最少做n道题,问保证每队最少做一题,冠军最少做n题的概率
思路:下面转载别人博客中的解释,很详细,基本上看着这个思路,将之代码化就能过,注意精度。
可以知道,每个人自己是互不影响的 对于一个选手 i 前 j 道题,做出 k 道题的概率F[i][j][k] = F[i][j - 1][k - 1] * p[i][j] + F[i][j - 1][k] * (1 - p[i][j])
那么问题可以转化为:所有至少做出一道的概率(p1) - 所有选手做出的题数n >= 1 && n < N 的概率(p2)
设s[i][j]表示F[i][M][0] + F[i][M][1] + … + F[i][M][j]
P1 = (s[1][M] - s[1][0])(s[2][M]-s[2][0])…*(s[T][M]-s[T][0])
P2 = (s[1][N-1] - s[1][0])(s[2][N-1]-s[2][0])…*(s[T][N-1]-s[T][0])
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAX = 1100;
double Dp[MAX][35][35];
double a[MAX][35];
double s[MAX][35];
int main()
{
int n,m,T;
while(scanf("%d %d %d",&m,&T,&n)&&(n+m+T))
{
for(int i=1;i<=T;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%lf",&a[i][j]);//第i队作对第j道题的概率
}
}
memset(Dp,0,sizeof(Dp));
memset(s,0,sizeof(s));
for(int i=1;i<=T;i++)
{
Dp[i][0][0]=1.0;
for(int j=1;j<=T;j++)
{
Dp[i][j][0]=Dp[i][j-1][0]*(1-a[i][j]);//第i队前j道题一道题都没有做对
}
for(int j=1;j<=m;j++)
{
for(int k=1;k<=j;k++)
{
Dp[i][j][k]=Dp[i][j-1][k-1]*a[i][j]+Dp[i][j-1][k]*(1-a[i][j]);//第i队前j道题做对k道题的概率
}
}
s[i][0]=Dp[i][m][0];//一道题都没有做对的概率
for(int j=1;j<=m;j++)
{
s[i][j]=s[i][j-1]+Dp[i][m][j];//做对1~j道题的概率
}
}
double pp=1.0;//都做对1~m道题的概率
double ppp=1.0;//都做对1~n-1道题的概率
for(int i=1;i<=T;i++)
{
pp*=(s[i][m]-s[i][0]);
ppp*=(s[i][n-1]-s[i][0]);
}
printf("%.3f\n",pp-ppp);//都至少做一道题,并且至少一个对做对的题数大于n
}
return 0;
}
Check the difficulty of problems的更多相关文章
- POJ 2151 Check the difficulty of problems
以前做过的题目了....补集+DP Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K ...
- Check the difficulty of problems(POJ 2151)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5457 ...
- POJ 2151 Check the difficulty of problems (动态规划-可能DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4522 ...
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- 【POJ】2151:Check the difficulty of problems【概率DP】
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8903 ...
- [ACM] POJ 2151 Check the difficulty of problems (概率+DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4748 ...
- Check the difficulty of problems - poj 2151 (概率+DP)
有 T(1<T<=1000) 支队伍和 M(0<M<=30) 个题目,已知每支队伍 i 解决每道题目 j 的的概率 p[i][j],现在问:每支队伍至少解决一道题,且解题最多的 ...
- 【poj2151】 Check the difficulty of problems
http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...
- [POJ2151]Check the difficulty of problems (概率dp)
题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...
随机推荐
- Java基础之访问文件与目录——获取与文件存储有关的信息(GetFileStores)
控制台程序,列出存储在系统中的文件的详细信息 import java.nio.file.FileStore; import java.nio.file.FileSystems; import java ...
- scala学习笔记(1)
下载和安装Scala 前往http://www.scala-lang.org/downloads下载Scala在各个平台的安装包,安装后即可在运行scala编译器和交互式命令行环境(interacti ...
- eclipse lua使用
首先安装lua eclipse,装插件或者独立版的都可以.但是在独立版的eclipse装subclipse会报错,Failed to prepare partial IU.解决办法: work aro ...
- composer很慢修改镜像
有两种方式启用本镜像服务: 系统全局配置: 即将配置信息添加到 Composer 的全局配置文件 config.json 中.见“例1” 单个项目配置: 将配置信息添加到某个项目的 composer. ...
- 一个新人对于JavaScript简单应用的理解
JavaScript 1.输出:document.write("hello,world"); document.write的意思就是给我再此页面中显示出什么什么小括号里面的内 ...
- 树链剖分(单点更新,求区间最值,区间求和Bzoj1036)
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MB Submit: 5759 Solved: 2383 [Submi ...
- Ruby操作Excel的方法与技巧大全
测试工作中,批量的数据通常会放到excel表格中,测试输出的数据写回表格中,这样输入输出易于管理,同时清晰明了 使用ruby来操作excel文件首先需要在脚本里包含以下语句 require'win32 ...
- linux第8天 connect强化
今天没有系统学习什么新知识,就是把以前学到的知识复习了一下,其中有几点值得注意 connect(fd, (struct sockaddr *)addr, sizeof(struct sockaddr_ ...
- spark使用Hive表操作
spark Hive表操作 之前很长一段时间是通过hiveServer操作Hive表的,一旦hiveServer宕掉就无法进行操作. 比如说一个修改表分区的操作 一.使用HiveServer的方式 v ...
- css3颜色渐变
从上到下的线性渐变: #grad { background: -webkit-linear-gradient(red, blue); /* Safari 5.1 - 6.0 */ backgrou ...