POJ3164 Command Network(最小树形图)
图论填个小坑。以前就一直在想,无向图有最小生成树,那么有向图是不是也有最小生成树呢,想不到还真的有,叫做最小树形图,网上的介绍有很多,感觉下面这个博客介绍的靠谱点:
http://www.cnblogs.com/vongang/archive/2012/07/18/2596851.html
所以下面的代码也是抄上面的模板的。里面还给出了不定根情况下的最小树形图的做法,新增一个虚拟根,连向其它所有点的费用是总费用+1,然后跑一次算法就可以了,这样可以保证虚拟根一定连出去某个顶点,而且不可能连两个,最后跑出来把多的费用减掉就可以了。感觉想法挺神奇的。
#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; #define maxn 120
#define maxm 12000 int n, m; struct Edge{
int u, v;
double w;
Edge(int ui, int vi, double wi) :u(ui), v(vi), w(wi){}
Edge(){}
}; vector<Edge> E; double x[maxn], y[maxn]; double dist(int i, int j){
return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
} double in[maxn]; // minimum pre edge weight
int pre[maxn]; // pre vertex
int vis[maxn]; // vis array
int id[maxn]; // mark down the id
int nv; // nv is the number of vertex after shrinking double directed_mst(int root)
{
double ret = 0; int nv = n;
while (1){
for (int i = 0; i < nv; ++i) in[i] = 1e10;
for (int i = 0; i < m; ++i){
int u = E[i].u, v = E[i].v;
if (E[i].w < in[v] && u != v){
in[v] = E[i].w;
pre[v] = u;
}
}
// found not connected means impossible
for (int i = 0; i < nv; ++i){
if (i == root) continue;
if (in[i]>1e9) return -1;
}
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0; for (int i = 0; i < nv; ++i){
ret += in[i];
int v = i; while (vis[v] != i&&id[v] == -1 && v != root){
vis[v] = i;
v = pre[v];
}
// v!=root means we find a circle,id[v]==-1 guarantee that it's not shrinked.
if (v != root&&id[v] == -1){
for (int u = pre[v]; u != v; u = pre[u]){
id[u] = cnt;
}
id[v] = cnt++;
}
}
if (cnt == 0) break;
for (int i = 0; i < nv; ++i){
if (id[i] == -1) id[i] = cnt++;
}
// change the cost of edge for each (u,v,w)->(u,v,w-in[v])
for (int i = 0; i < m; ++i){
int v = E[i].v;
E[i].u = id[E[i].u];
E[i].v = id[E[i].v];
if (E[i].u != E[i].v) E[i].w -= in[v];
}
// mark down the new root
root = id[root];
// mark down the new vertex number
nv = cnt;
}
return ret;
} int main()
{
while (cin >> n >> m){
E.clear();
for (int i = 0; i < n; ++i){
scanf("%lf%lf", x + i, y + i);
}
int ui, vi;
for (int i = 0; i < m; ++i){
scanf("%d%d", &ui, &vi);
--ui; --vi;
if (ui != vi) E.push_back(Edge(ui, vi, dist(ui,vi)));
}
m = E.size();
double ans = directed_mst(0);
if (ans < 0) puts("poor snoopy");
else printf("%.2f\n", ans);
}
return 0;
}
POJ3164 Command Network(最小树形图)的更多相关文章
- POJ3164 Command Network —— 最小树形图
题目链接:https://vjudge.net/problem/POJ-3164 Command Network Time Limit: 1000MS Memory Limit: 131072K ...
- POJ3436 Command Network [最小树形图]
POJ3436 Command Network 最小树形图裸题 傻逼poj回我青春 wa wa wa 的原因竟然是需要%.2f而不是.2lf 我还有英语作业音乐作业写不完了啊啊啊啊啊啊啊啊啊 #inc ...
- POJ 3164 Command Network 最小树形图
题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...
- POJ 3164 Command Network 最小树形图模板
最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...
- POJ 3164 Command Network 最小树形图 朱刘算法
=============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...
- POJ - 3164-Command Network 最小树形图——朱刘算法
POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- POJ 3164——Command Network——————【最小树形图、固定根】
Command Network Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 15080 Accepted: 4331 ...
- POJ 3164 Command Network (最小树形图)
[题目链接]http://poj.org/problem?id=3164 [解题思路]百度百科:最小树形图 ]里面有详细的解释,而Notonlysucess有精简的模板,下文有对其模板的一点解释,前提 ...
随机推荐
- 使用Telerik控件搭建Doubanfm频道部分
今天感觉好累啊..还是坚持记录下. 收集的API: https://github.com/HakurouKen/douban.fm-api https://github.com/zonyitoo/do ...
- public、private、protected 与 默认 等访问修饰符
1)public(公共的):被public修饰的属性和方法可以被所有类访问. 2)private(私有的):被private修饰的属性和方法只能在改类的内部使用. 3)protected(受保护的): ...
- move和转发
总的来说C++09跟C++98相比的变化是极其重大的.这个变化体现在三个方面,一个是形式上的变化,即在编码形式层面的支持,也就是对应我们所谓的编程范式(paradigm).C++09不会引入新的编程范 ...
- find your present
Description In the present, and their card numbers are , , , , .so your present will be the one with ...
- Nginx服务器架构简析
一.Nginx的模块化 模块化结构的思想是一个很久的概念,但也正是成熟的思想造就了Nginx的巨大优越性. 我们知道Nginx从总体上来讲是有许多个模块构成的.习惯将Nginx分为5大模块分别为:核心 ...
- Mac OSX 快捷键&命令行总览
大家初用Mac OSX可能不习惯,特别收集总结了Mac OSX 上的快捷键,方便大家参考 ,请叫我雷锋. 一.Mac OSX 快捷键 ctrl+shift ...
- 条款9:不要在构造和析构过程中调用virtual函数
如下是一个股票交易的例子: class Transaction // 交易的基类 { public: Transaction(); ; // 用于记录交易日志 }; Transaction::Tran ...
- SharePoint 2010 中使用Ztree和EasyUI样式冲突问题
<style type="text/css"> /*解决ztree和SharePoint样式冲突问题*/ .ztree li a { display: inline-b ...
- AngularJs学习笔记-慕课网AngularJS实战
第1章 快速上手 放弃了IE8以及以下,不支持. 4大核心特性: 1.MVC Model: 数据模型 View:视图 Controller:业务逻辑和控制逻辑 好处:职责清晰,模块化. 2.模块化 3 ...
- Object:
所有类的直接或者间接父类,Java认为所有的对象都具备一些基本的共性内容,这些内容可以不断的向上抽取,最终就抽取到了一个最顶层的类中的,该类中定义的就是所有对象都具备的功能. 具体方法: 1,bool ...