T(n)=aT(n/b)+f(n);

where we can interpret n/b to mean either floor(b/n) or ceil(b/n), Then T (n) has the following asymptotic bounds:

1. If f (n)= O(nlogb a-c) for some constant c> 0, then T (n)=Θ(nlogb a)
2.If f (n)= Θ(nlogb a), then T (n)=Θ(nlogb a  log n)

3. If f (n)= Ω(nlogb a+c) for some constant c> 0, 
and if af (n/b)>= cf (n)  for

some constant c < 1 and all sufficiently large n, then T (n)= Θ(f(n)).

//

comments:

compare the f(n) and b logb a,and the max will determine the complexity of the recurrence.

in case 1 and case 3 ,the larger determine the complexity of the recurrence,

in case 2,they are  the same size ,so,there add a factor log n.

besides all the comparison must be polynomically smaller or larger.

CLRS:master theory in complexity of algorithm的更多相关文章

  1. No.004:Median of Two Sorted Arrays

    问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...

  2. No.023:Merge k Sorted Lists

    问题: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 关于并行计算的Scan操作

    simple and common parallel algorithm building block is the all-prefix-sums operation. In this chapte ...

  5. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  6. A Gentle Guide to Machine Learning

    A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...

  7. No.006:ZigZag Conversion

    问题: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  8. No.005:Longest Palindromic Substring

    问题: Given a string S, find the longest palindromic substring in S. You may assume that the maximum l ...

  9. No.026:Remove Duplicates from Sorted Array

    问题: Given a sorted array, remove the duplicates in place such that each element appear only once and ...

随机推荐

  1. (WPF, Service) 删除注册表中的USB Enum值.

    Task: 删除HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\VID_0XXX&PID_0XXX Key Tree 首先第一想到的使 ...

  2. Java的安全性和可移植性

        Java的这两个特性,关键在于Java编译器的输出并不是可执行的代码,而是字节码 bytecode.      字节码是一套设计用来在Java运行时系统下执行的高度优化的指令集,该Java运行 ...

  3. IGS_学习笔记06_IREP发布客户化集成接口为Web Service(案例)

    2015-01-03 Created By BaoXinjian

  4. Report_客制化以PLSQL输出HTML标记实现WEB报表(案例)

    2014-05-31 Created By BaoXinjian

  5. UVA116 单向 DSP(多段图最短路)

    单向 DSP [题目链接]单向 DSP [题目类型]dp &题解: 紫书P271 这块的字典序排序我觉得挺厉害的,每次都把那3步sort一下,之后if (v< d[i][j]) 这块的小 ...

  6. POJ 1740 A New Stone Game(普通博弈)

    A New Stone Game 题意: 对于n堆石子,每堆若干个,两人轮流操作,每次操作分两步,第一步从某堆中去掉至少一个,第二步(可省略)把该堆剩余石子的一部分分给其它的某些堆.最后谁无子可取即输 ...

  7. 关于centos7下扩充和减小xfs逻辑分区大小的问题

    比如,我想把/dev/centos/home下的50G变为8G 1.增加 1.1 去掉挂载 umount /home 1.2 减小home, lvreduce -L 8G /dev/centos/ho ...

  8. mysql函数计算地表两点间距离

    DELIMITER $$ CREATE FUNCTION `test`.`getDistance`(LatBegin FLOAT(10,4), LngBegin FLOAT(10,4), LatEnd ...

  9. 保存恢复临时信-Android 中使用onSaveInstanceState和onRestoreInstanceState

    在Activity中,有两个方法用于临时保存.恢复状态信息,这两个方法是: public void onSaveInstanceState(Bundle savedInstanceState); pu ...

  10. MODBUS-寄存器与功能码学习

    分类 简称 起始地址 结束地址 能够使用的功能码 输出逻辑线圈/(可读写位)/(DI/O)(如继电器开关控制) 0x 00000 09999 0x01读一组逻辑线圈 0x05写单个线圈 0x0f写多个 ...