T(n)=aT(n/b)+f(n);

where we can interpret n/b to mean either floor(b/n) or ceil(b/n), Then T (n) has the following asymptotic bounds:

1. If f (n)= O(nlogb a-c) for some constant c> 0, then T (n)=Θ(nlogb a)
2.If f (n)= Θ(nlogb a), then T (n)=Θ(nlogb a  log n)

3. If f (n)= Ω(nlogb a+c) for some constant c> 0, 
and if af (n/b)>= cf (n)  for

some constant c < 1 and all sufficiently large n, then T (n)= Θ(f(n)).

//

comments:

compare the f(n) and b logb a,and the max will determine the complexity of the recurrence.

in case 1 and case 3 ,the larger determine the complexity of the recurrence,

in case 2,they are  the same size ,so,there add a factor log n.

besides all the comparison must be polynomically smaller or larger.

CLRS:master theory in complexity of algorithm的更多相关文章

  1. No.004:Median of Two Sorted Arrays

    问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...

  2. No.023:Merge k Sorted Lists

    问题: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 关于并行计算的Scan操作

    simple and common parallel algorithm building block is the all-prefix-sums operation. In this chapte ...

  5. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  6. A Gentle Guide to Machine Learning

    A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...

  7. No.006:ZigZag Conversion

    问题: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  8. No.005:Longest Palindromic Substring

    问题: Given a string S, find the longest palindromic substring in S. You may assume that the maximum l ...

  9. No.026:Remove Duplicates from Sorted Array

    问题: Given a sorted array, remove the duplicates in place such that each element appear only once and ...

随机推荐

  1. [运维-服务器 – 1A] – nginx.conf(转)

    #定义Nginx运行的用户和用户组user www www; #nginx进程数,建议设置为等于CPU总核心数.worker_processes 8; #全局错误日志定义类型,[ debug | in ...

  2. PLSQL_闪回删除FlashBack Delete表误删除如何进行恢复(案例)

    2014-07-02 Created By BaoXinjian

  3. [实变函数]3.1 外测度 (outer measure)

    1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), ...

  4. 【转】select和epoll模型的差异

    http://www.cppblog.com/converse/archive/2008/10/12/63836.html epoll为什么这么快 epoll是多路复用IO(I/O Multiplex ...

  5. URI

    1, URI (标识.定位任何资源的字符串) 在电脑术语中,统一资源标识符(Uniform Resource Identifier,或URI)是一个用于标识某一互联网资源名称的字符串. 该种标识允许用 ...

  6. Web Uploader文件上传&&使用webupload有感(黄色部分)

    引入资源 使用Web Uploader文件上传需要引入三种资源:JS, CSS, SWF. <!--引入CSS--> <link rel="stylesheet" ...

  7. SQL Server 2005中的分区表(四):删除(合并)一个分区(转)

    在前面我们介绍过如何创建和使用一个分区表,并举了一个例子,将不 同年份的数据放在不同的物理分区表里.具体的分区方式为: 第1个小表:2010-1-1以前的数据(不包含2010-1-1). 第2个小表: ...

  8. dedeCMS安装,前端样式不显示

    因为dedeCMS样式引用用的是绝对路径:dede默认安装在网站的根目录. 所以,解决方法有三种: 1.修改代码路径,很不推荐,那么多页面可操作性低: 2.直接安装在站点根目录www目录,也行,但是容 ...

  9. shell 统计 awk

    time awk '{a[$1]++}END{for(i in a){printf("%d\t%s\n",a[i],i)}}' access.log | sort -nr | he ...

  10. cocos2dx 菜单按钮回调方法传参 tag传参

    .h文件 void menuCallBack(CCObject* pSender); .cpp CCMenuItemSprite* item = CCMenuItemSprite::create( m ...