人工智能是当下很热门的话题,手写识别是一个典型的应用。为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务。

  预处理一张图片:

  首先采用opencv读取图片的构造函数读取灰度的图片,再采用大津法求出图片的二值化的阈值,并且将图片二值化。

 int otsu(const IplImage* src_image) {
double sum = 0.0;
double w0 = 0.0;
double w1 = 0.0;
double u0_temp = 0.0;
double u1_temp = 0.0;
double u0 = 0.0;
double u1 = 0.0;
double delta_temp = 0.0;
double delta_max = 0.0; int pixel_count[] = { };
float pixel_pro[] = { };
int threshold = ;
uchar* data = (uchar*)src_image->imageData;
for (int i = ; i < src_image->height; i++) {
for (int j = ; j < src_image->width; j++) {
pixel_count[(int)data[i * src_image->width + j]]++;
sum += (int)data[i * src_image->width + j];
}
}
for (int i = ; i < ; i++) {
pixel_pro[i] = (float)pixel_count[i] / (src_image->height * src_image->width);
}
for (int i = ; i < ; i++) {
w0 = w1 = u0_temp = u1_temp = u0 = u1 = delta_temp = ;
for (int j = ; j < ; j++) {
if (j <= i) {
w0 += pixel_pro[j];
u0_temp += j * pixel_pro[j];
}
else {
w1 += pixel_pro[j];
u1_temp += j * pixel_pro[j];
}
}
u0 = u0_temp / w0;
u1 = u1_temp / w1;
delta_temp = (float)(w0 *w1* pow((u0 - u1), ));
if (delta_temp > delta_max) {
delta_max = delta_temp;
threshold = i;
}
}
return threshold;
}

大津法

 void imageBinarization(IplImage* src_image) {
IplImage* binImg = cvCreateImage(cvGetSize(src_image), src_image->depth, src_image->nChannels);
CvScalar s;
int ave = ;
int binThreshold = otsu(src_image); for (int i = ; i < src_image->height; i++) {
for (int j = ; j < src_image->width; j++) {
s = cvGet2D(src_image, i, j);
ave = (s.val[] + s.val[] + s.val[]) / ;
if (ave < binThreshold) {
s.val[] = s.val[] = s.val[] = 0xff;
cvSet2D(src_image, i, j, s);
}
else {
s.val[] = s.val[] = s.val[] = 0x00;
cvSet2D(src_image, i, j, s);
}
}
}
cvCopy(src_image, binImg);
cvSaveImage(bined, binImg);
//cvShowImage("binarization", binImg);
//waitKey(0);
}

二值化

  由于是只进行简单的识别模拟,因此没有做像素断点的处理。获取minst提供的数据集,提取每个图片的hog特征,参数如下:

 HOGDescriptor *hog = new HOGDescriptor(
cvSize(ImgWidht, ImgHeight), cvSize(, ), cvSize(, ), cvSize(, ), );

  (9个方向换成18个可能会取得更准确的结果,这取决于对图片本身的复杂程度的分析

  之后即可训练knn分类器,进行分类了。

 void knnTrain() {
#ifdef SAVETRAINED
//knn training;
samples.clear();
dat_mat = Mat::zeros( * nImgNum, , CV_32FC1);
res_mat = Mat::zeros( * nImgNum, , CV_32FC1);
for (int i = ; i != ; i++) {
getFile(dirNames[i], i);
}
preTrain();
cout << "------ Training finished. -----" << endl << endl;
knn.train(dat_mat, res_mat, Mat(), false, ); #ifdef SAVEASXML
knn.save("./trained/knnTrained.xml");
#endif #else
knn.load("./trained/knnTrained.xml");
#endif //knn test
cout << endl << "--- KNN test mode : ---" << endl;
int tCnt = ;
int tAc = ;
selfknnTest(tCnt, tAc); cout << endl << endl << "Total number of test samples : " << tCnt << endl; cout << "Accuracy : " << float(float(tAc) / float(tCnt)) * << "%" << endl;
}

train

 训练结果如下,准确率还是很令人满意的。

opencv实现KNN手写数字的识别的更多相关文章

  1. OpenCV+TensorFlow图片手写数字识别(附源码)

    初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...

  2. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  3. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  4. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  5. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  6. 10,knn手写数字识别

    # 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClas ...

  7. KNN手写数字识别

    import numpy as np import matplotlib .pyplot as plt from sklearn.neighbors import KNeighborsClassifi ...

  8. caffe+opencv3.3dnn模块 完成手写数字图片识别

    最近由于项目需要用到caffe,学习了下caffe的用法,在使用过程中也是遇到了些问题,通过上网搜索和问老师的方法解决了,在此记录下过程,方便以后查看,也希望能为和我一样的新手们提供帮助. 顺带附上老 ...

  9. 用tensorflow求手写数字的识别准确率 (简单版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = in ...

随机推荐

  1. mysql Communications link failure,C3p0的参数详解

    MySQL默认一个连接空闲8小时候就会自动断开,而这时程序以为连接还能使用,然后在使用的时候就会出现Communications link failure异常. 这时需要进行两步设置,有时候只设置My ...

  2. nodeJs 初探 ~

    今天晚上,开始时间了一下nodejs,跟着 Node入门 一步步的往下走.对node开发也有了初步的了解. 期间没有碰到什么问题,只有在最后的时候,碰到了几个问题.在这里记录一下: 1 . cross ...

  3. samba 常见问题

    今天帮一个朋友搭建samba服务器,发现总是无法正常访问,最后google+摸索搞定了,下面把遇到的问题和解决方法共享一下. 这里用的linux是centos版本6. 一开始遇到的问题是‘找不到网络路 ...

  4. 常用的Python字符串常量

    下面是一些常用的Python字符串常量string.digits:包含0-9的字符串string.letters:包含所有大小写字母的字符串 string.lowercase:所有小写字母string ...

  5. TJU 4087. box

    题目:Tuhao and his two small partners participated in the tournament.But in the end, they lost the cha ...

  6. POJ 2591 1338 2545 2247(数列递归衍生问题,思路挺妙)

    四道题的难度: 2591<1338<2545<2247 POJ 2591 Set Definition: 这是从discuss里看来的,写的挺好,直接copy,根据我的代码稍有改动( ...

  7. 【蛙蛙推荐】Lucene.net试用

    [蛙蛙推荐]Lucene.net试用   [简介] lucene.net好多人都知道的吧,反正我是最近才好好的看了一下,别笑我拿历史当新闻哦,不太了解Lucence的朋友先听我说两句哦.Lucene的 ...

  8. MY_Log,无缝替换原生Log,支持日志输出到文件、FirePHP

    自己扩展了一个MY_Log, 用法类似于log4j,目前支持将日志输出到文件.FirePHP.如果你需要将日志输出到其他地方,比如邮件.数据库等,可以很方便地进行扩展. 用法很简单,大家一看就知道.1 ...

  9. ExtJs之工具栏及菜单栏

    先培养一下大概的感觉吧. 基本按书上都弄出来了. <!DOCTYPE html> <html> <head> <title>ExtJs</titl ...

  10. UVA 11038 - How Many O's? 计算对答案的贡献

    题意: 求[n, m]之间包含0的数字的个数题解:转化为求solve(n) - solve(m-1)的前缀问题 对于求0到n的解,我们举例 n = 25789 对于8这位,让其为0对答案的贡献是 (0 ...