1.返回行与逻辑读的比率

CREATE TABLE t as select * from dba_objects;
--CREATE INDEX idx ON t (object_id); ---例1
alter session set statistics_level=all; set linesize 1000
set pagesize 2000
select * from t where object_id=6; SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last')); PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
SQL_ID 8cxbzma1az713, child number 0
-------------------------------------
select * from t where object_id=6 Plan hash value: 1601196873
---------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
---------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.07 | 1048 | 774 |
|* 1 | TABLE ACCESS FULL| T | 1 | 12 | 1 |00:00:00.07 | 1048 | 774 |
---------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("OBJECT_ID"=6)
Note
-----
- dynamic sampling used for this statement (level=2)

上面的语句只返回了1行数据却产生了1048个逻辑读。

执行计划显示的是全表扫描,创建索引

CREATE INDEX idx ON t (object_id);

执行计划如下:
select * from t where object_id=6

Plan hash value: 2770274160

----------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 4 |
| 1 | TABLE ACCESS BY INDEX ROWID| T | 1 | 1 | 1 |00:00:00.01 | 4 |
|* 2 | INDEX RANGE SCAN | IDX | 1 | 1 | 1 |00:00:00.01 | 3 |
----------------------------------------------------------------------------------------------

逻辑读为4。

2.执行计划中的评估是否准确。

查看e-rows 预估数量,a-rows 实际返回的数量。如果相差过大则说明需要收集表的统计信息。

SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));

3.类型转换需要关注。

举例如下:

create table t_col_type(id varchar2(20),col2 varchar2(20),col3 varchar2(20));
insert into t_col_type select rownum,'abc','efg' from dual connect by level<=10000;
commit;
create index idx_id on t_col_type(id);

注意ID的数据类型为VARCHAR(20)

select * from t_col_type where id=6;
执行计划
----------------------------------------------------------
Plan hash value: 3191204463
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 36 | 9 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T_COL_TYPE | 1 | 36 | 9 (0)| 00:00:01 |
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(TO_NUMBER("ID")=6)

注意这里没有使用到索引。

执行

select * from t_col_type where id='';
执行计划
----------------------------------------------------------
Plan hash value: 3998173245
------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 36 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| T_COL_TYPE | 1 | 36 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IDX_ID | 1 | | 1 (0)| 00:00:01 |
------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("ID"='6')

使用到了索引。

4.小心递归调用。

6种获取执行计划的方法中,只有 autotrace 的方式可以看出递归调用的次数(recursive calls)

注意SQL中尽量不要使用函数的使用例如:

drop table people purge;
create table people (first_name varchar2(200),last_name varchar2(200),sex_id number); create table sex (name varchar2(20), sex_id number);
insert into people (first_name,last_name,sex_id) select object_name,object_type,1 from dba_objects;
insert into sex (name,sex_id) values ('男',1);
insert into sex (name,sex_id) values ('女',2);
insert into sex (name,sex_id) values ('不详',3);
commit; create or replace function get_sex_name(p_id sex.sex_id%type) return sex.name%type is
v_name sex.name%type;
begin
select name
into v_name
from sex
where sex_id=p_id;
return v_name;
end;
/

执行:

set linesize 1000
set pagesize 2000 set autotrace traceonly --例1: select sex_id,
first_name||' '||last_name full_name,
get_sex_name(sex_id) gender
from people;

执行计划如下:

----------------------------------------------------------
Plan hash value: 2528372185
----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 80635 | 16M| 137 (1)| 00:00:02 |
| 1 | TABLE ACCESS FULL| PEOPLE | 80635 | 16M| 137 (1)| 00:00:02 |
----------------------------------------------------------------------------
Note
-----
- dynamic sampling used for this statement (level=2) 统计信息
----------------------------------------------------------
73121 recursive calls
0 db block gets
517142 consistent gets
0 physical reads
0 redo size
3382143 bytes sent via SQL*Net to client
54029 bytes received via SQL*Net from client
4876 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
73121 rows processed

产生了73121此递归调用。

消除办法,直接使用关联查询。

5.表的访问次数。

6种获取执行计划的方法中,只有 statisitcs_level=all 的方式可以看出表访问次数(STARTS),这个很重要!

执行:

SELECT /*+ gather_plan_statistics */ count(t2.col2)
FROM t1 ,t2 WHERE t1.id=t2.id and t1.col1 = 666;
SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID g048suxnxkxyr, child number 0
-------------------------------------
SELECT /*+ gather_plan_statistics */ count(t2.col2) FROM t1 ,t2 WHERE
t1.id=t2.id and t1.col1 = 666 Plan hash value: 3711554156
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.30 | 94651 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.30 | 94651 |
| 2 | NESTED LOOPS | | 1 | | 75808 |00:00:00.31 | 94651 |
| 3 | NESTED LOOPS | | 1 | 32 | 75808 |00:00:00.19 | 18843 |
| 4 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 32 | 80016 |00:00:00.08 | 1771 |
|* 5 | INDEX RANGE SCAN | T1_COL1 | 1 | 32 | 80016 |00:00:00.03 | 169 |
|* 6 | INDEX UNIQUE SCAN | T2_PK | 80016 | 1 | 75808 |00:00:00.08 | 17072 |
| 7 | TABLE ACCESS BY INDEX ROWID | T2 | 75808 | 1 | 75808 |00:00:00.08 | 75808 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
5 - access("T1"."COL1"=666)
6 - access("T1"."ID"="T2"."ID")

这里表的访问次数过大,应该走hash或排序合并连接,原因是表的收集信息不准确。

NL连接表的访问次数不会这么大。

6.注意表的真实访问行数。

数据准备:

drop table t1 cascade constraints;
create table t1 as select * from dba_objects;
drop table t2 cascade constraints;
create table t2 (id1,id2) as
select rownum ,rownum+100 from dual connect by level <=1000; alter session set statistics_level=all;
set linesize 1000
set pagesize 2000

优化前执行如下:

select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1) a
where a.rn >= 1
and a.rn <= 10;
SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last')); SQL_ID ayzfn8k0j3sms, child number 0
-------------------------------------
select * from (select t1.*, rownum as rn from t1, t2 where
t1.object_id = t2.id1) a where a.rn >= 1 and a.rn <= 10 Plan hash value: 3062220019
---------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem |
---------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 10 |00:00:00.11 | 1052 | 749 | | | |
|* 1 | VIEW | | 1 | 1008 | 10 |00:00:00.11 | 1052 | 749 | | | |
| 2 | COUNT | | 1 | | 943 |00:00:00.11 | 1052 | 749 | | | |
|* 3 | HASH JOIN | | 1 | 1008 | 943 |00:00:00.11 | 1052 | 749 | 1036K| 1036K| 1197K (0)|
| 4 | TABLE ACCESS FULL| T2 | 1 | 1000 | 1000 |00:00:00.01 | 4 | 0 | | | |
| 5 | TABLE ACCESS FULL| T1 | 1 | 70183 | 73156 |00:00:00.08 | 1048 | 749 | | | |
---------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(("A"."RN"<=10 AND "A"."RN">=1))
3 - access("T1"."OBJECT_ID"="T2"."ID1")
Note
-----
- dynamic sampling used for this statement (level=2)

这个查询总共返回10记录,但是内部查询返回了  条记录。

优化后:

select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=10) a
where a.rn >= 1; SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------------
SQL_ID 7wzvqay91x14y, child number 0
-------------------------------------
select * from (select t1.*, rownum as rn from t1, t2 where
t1.object_id = t2.id1 and rownum<=10) a where a.rn >= 1 Plan hash value: 1802812661
------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 10 |00:00:00.01 | 9 | | | |
|* 1 | VIEW | | 1 | 10 | 10 |00:00:00.01 | 9 | | | |
|* 2 | COUNT STOPKEY | | 1 | | 10 |00:00:00.01 | 9 | | | |
|* 3 | HASH JOIN | | 1 | 1008 | 10 |00:00:00.01 | 9 | 1036K| 1036K| 1210K (0)|
| 4 | TABLE ACCESS FULL| T2 | 1 | 1000 | 1000 |00:00:00.01 | 4 | | | |
| 5 | TABLE ACCESS FULL| T1 | 1 | 70183 | 10 |00:00:00.01 | 5 | | | |
------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("A"."RN">=1)
2 - filter(ROWNUM<=10)
3 - access("T1"."OBJECT_ID"="T2"."ID1")
Note
-----
- dynamic sampling used for this statement (level=2)

T1表只返回十条数据。

这种修改 可以优化分页数据。

第一页
select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=10) a
where a.rn >= 1; 第二页 select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=20) a
where a.rn >= 10; 第三页 select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=30) a
where a.rn >= 20;

这样,可以提高前几页的分页效率。

7.使用索引消除排序。

比如需要根据object_id 进行排序,那么可以使用索引消除排序操作,因为索引本身有序。

create index idx_object_id on t(object_id);
set autotrace traceonly
select * from t where object_id>2 order by object_id;

识别低效率的SQL语句的更多相关文章

  1. oracle 识别’低效执行’的SQL语句

    用下列SQL工具找出低效SQL: SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, ROUND((BUFFER_GETS-DISK_READS)/BUFFER_ ...

  2. 小贝_mysql sql语句优化过程

    sql语句优化 一.SQL优化的一般步骤 (1).通过show status命令了解各种SQL的运行频率. (2).定位运行效率较低的SQL语句-(重点select) (3).通过explain分析低 ...

  3. Mysql写出高质量的sql语句的几点建议

    CleverCode在实际的工作也写过一些低效率的sql语句.这些语句会给数据库带来非常大的压力.最基本的表现就是sql语句执行慢,后来逐渐的去优化和尝试. 总结了一些高质量的sql语句的写法.这里C ...

  4. sql语句优化SQL Server

    MS   SQL   Server查询优化方法查询速度慢的原因很多,常见如下几种 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)          2.I/O吞吐量小,形成了 ...

  5. 数据库性能优化之SQL语句优化

    一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的编写等是体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...

  6. 整理:sql语句优化之SQL Server

    . 增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存.使用并行还是串行程是MsSQL自动评估选择的.单个任务分解成多个任务,就可 以在处理器上运行.例如耽搁查询的排序.连接.扫描和 ...

  7. 数据库 SQL语句优化

    温馨提示:本篇内容均来自网上,本人只做了稍微处理,未进行细致研究,仅当做以后不备之需,如若你喜欢可尽情转走. 一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图 ...

  8. [转]数据库性能优化之SQL语句优化1

    一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...

  9. 数据库优化之SQL语句优化-记录

    1. 操作符优化 (a) IN 操作符 从Oracle执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别: ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查 ...

随机推荐

  1. Shell Sort(草稿)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Shel ...

  2. XAF应用开发教程(七)外观控制模块

    很多时候,我们需要按照不同的条件显示不同的效果,在传统的软件开发中,我们会直接使用 控件名称.BackColor,Enable,Visible等属性进行控制. 如果一个业务对象在多处使用,要么我们会去 ...

  3. 01 Developing Successful Oracle Applications

    varchar2 类型定义时, 个人认为应该选择byte 类型, 即 varchar2(20), oracle 支持的最大的字符串是 varchar2(4000), 同时, 个人认为, 当你定义一个v ...

  4. sql语句语法大全

    一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...

  5. 转:copy initialization

    转自: http://en.cppreference.com/w/cpp/language/copy_initialization copy initialization   C++   C++ la ...

  6. OpenGL的视图变换、模型变换、投影变换、视口变换

    产生目标场景的过程类似于用照相机进行拍照: (1) 把照相机固定在三角架上,并让他对准场景从不同位置观察场景(视图变换) gluLookAt (2) 对场景进行安排,使各个物体在照片中的位置是我们所希 ...

  7. Hello,Akka

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://www.blogbus.com/dreamhead-logs/235916459.html 只要稍微了解过一些Scala, ...

  8. nosql简述

    1.NoSQL数据库概念 NoSQL数据库是非关系型数据库,主要是针对关系型数据库而言,它主要是用来解决半结构化数据和非机构化数据的存储问题. 2.为什么使用NoSQL数据库? (1)对数据库的高并发 ...

  9. return 还是 不return

    jQuery.fn.functiona = function() { //return this.each(function() { **** } jQuery(this).css('backgrou ...

  10. Linux下数据库的安装和使用

    数据库有多重要就不用说了,每一个计算机相关行业的人都必须要学会基本的数据库操作,因为你总会用到的. 之前转过一些学习资源: 与MySQL的零距离接触 - 慕课网 Python操作MySQL数据库 生物 ...