1.返回行与逻辑读的比率

CREATE TABLE t as select * from dba_objects;
--CREATE INDEX idx ON t (object_id); ---例1
alter session set statistics_level=all; set linesize 1000
set pagesize 2000
select * from t where object_id=6; SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last')); PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
SQL_ID 8cxbzma1az713, child number 0
-------------------------------------
select * from t where object_id=6 Plan hash value: 1601196873
---------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
---------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.07 | 1048 | 774 |
|* 1 | TABLE ACCESS FULL| T | 1 | 12 | 1 |00:00:00.07 | 1048 | 774 |
---------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("OBJECT_ID"=6)
Note
-----
- dynamic sampling used for this statement (level=2)

上面的语句只返回了1行数据却产生了1048个逻辑读。

执行计划显示的是全表扫描,创建索引

CREATE INDEX idx ON t (object_id);

执行计划如下:
select * from t where object_id=6

Plan hash value: 2770274160

----------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 4 |
| 1 | TABLE ACCESS BY INDEX ROWID| T | 1 | 1 | 1 |00:00:00.01 | 4 |
|* 2 | INDEX RANGE SCAN | IDX | 1 | 1 | 1 |00:00:00.01 | 3 |
----------------------------------------------------------------------------------------------

逻辑读为4。

2.执行计划中的评估是否准确。

查看e-rows 预估数量,a-rows 实际返回的数量。如果相差过大则说明需要收集表的统计信息。

SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));

3.类型转换需要关注。

举例如下:

create table t_col_type(id varchar2(20),col2 varchar2(20),col3 varchar2(20));
insert into t_col_type select rownum,'abc','efg' from dual connect by level<=10000;
commit;
create index idx_id on t_col_type(id);

注意ID的数据类型为VARCHAR(20)

select * from t_col_type where id=6;
执行计划
----------------------------------------------------------
Plan hash value: 3191204463
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 36 | 9 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T_COL_TYPE | 1 | 36 | 9 (0)| 00:00:01 |
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(TO_NUMBER("ID")=6)

注意这里没有使用到索引。

执行

select * from t_col_type where id='';
执行计划
----------------------------------------------------------
Plan hash value: 3998173245
------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 36 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| T_COL_TYPE | 1 | 36 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IDX_ID | 1 | | 1 (0)| 00:00:01 |
------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("ID"='6')

使用到了索引。

4.小心递归调用。

6种获取执行计划的方法中,只有 autotrace 的方式可以看出递归调用的次数(recursive calls)

注意SQL中尽量不要使用函数的使用例如:

drop table people purge;
create table people (first_name varchar2(200),last_name varchar2(200),sex_id number); create table sex (name varchar2(20), sex_id number);
insert into people (first_name,last_name,sex_id) select object_name,object_type,1 from dba_objects;
insert into sex (name,sex_id) values ('男',1);
insert into sex (name,sex_id) values ('女',2);
insert into sex (name,sex_id) values ('不详',3);
commit; create or replace function get_sex_name(p_id sex.sex_id%type) return sex.name%type is
v_name sex.name%type;
begin
select name
into v_name
from sex
where sex_id=p_id;
return v_name;
end;
/

执行:

set linesize 1000
set pagesize 2000 set autotrace traceonly --例1: select sex_id,
first_name||' '||last_name full_name,
get_sex_name(sex_id) gender
from people;

执行计划如下:

----------------------------------------------------------
Plan hash value: 2528372185
----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 80635 | 16M| 137 (1)| 00:00:02 |
| 1 | TABLE ACCESS FULL| PEOPLE | 80635 | 16M| 137 (1)| 00:00:02 |
----------------------------------------------------------------------------
Note
-----
- dynamic sampling used for this statement (level=2) 统计信息
----------------------------------------------------------
73121 recursive calls
0 db block gets
517142 consistent gets
0 physical reads
0 redo size
3382143 bytes sent via SQL*Net to client
54029 bytes received via SQL*Net from client
4876 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
73121 rows processed

产生了73121此递归调用。

消除办法,直接使用关联查询。

5.表的访问次数。

6种获取执行计划的方法中,只有 statisitcs_level=all 的方式可以看出表访问次数(STARTS),这个很重要!

执行:

SELECT /*+ gather_plan_statistics */ count(t2.col2)
FROM t1 ,t2 WHERE t1.id=t2.id and t1.col1 = 666;
SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID g048suxnxkxyr, child number 0
-------------------------------------
SELECT /*+ gather_plan_statistics */ count(t2.col2) FROM t1 ,t2 WHERE
t1.id=t2.id and t1.col1 = 666 Plan hash value: 3711554156
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.30 | 94651 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.30 | 94651 |
| 2 | NESTED LOOPS | | 1 | | 75808 |00:00:00.31 | 94651 |
| 3 | NESTED LOOPS | | 1 | 32 | 75808 |00:00:00.19 | 18843 |
| 4 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 32 | 80016 |00:00:00.08 | 1771 |
|* 5 | INDEX RANGE SCAN | T1_COL1 | 1 | 32 | 80016 |00:00:00.03 | 169 |
|* 6 | INDEX UNIQUE SCAN | T2_PK | 80016 | 1 | 75808 |00:00:00.08 | 17072 |
| 7 | TABLE ACCESS BY INDEX ROWID | T2 | 75808 | 1 | 75808 |00:00:00.08 | 75808 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
5 - access("T1"."COL1"=666)
6 - access("T1"."ID"="T2"."ID")

这里表的访问次数过大,应该走hash或排序合并连接,原因是表的收集信息不准确。

NL连接表的访问次数不会这么大。

6.注意表的真实访问行数。

数据准备:

drop table t1 cascade constraints;
create table t1 as select * from dba_objects;
drop table t2 cascade constraints;
create table t2 (id1,id2) as
select rownum ,rownum+100 from dual connect by level <=1000; alter session set statistics_level=all;
set linesize 1000
set pagesize 2000

优化前执行如下:

select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1) a
where a.rn >= 1
and a.rn <= 10;
SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last')); SQL_ID ayzfn8k0j3sms, child number 0
-------------------------------------
select * from (select t1.*, rownum as rn from t1, t2 where
t1.object_id = t2.id1) a where a.rn >= 1 and a.rn <= 10 Plan hash value: 3062220019
---------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem |
---------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 10 |00:00:00.11 | 1052 | 749 | | | |
|* 1 | VIEW | | 1 | 1008 | 10 |00:00:00.11 | 1052 | 749 | | | |
| 2 | COUNT | | 1 | | 943 |00:00:00.11 | 1052 | 749 | | | |
|* 3 | HASH JOIN | | 1 | 1008 | 943 |00:00:00.11 | 1052 | 749 | 1036K| 1036K| 1197K (0)|
| 4 | TABLE ACCESS FULL| T2 | 1 | 1000 | 1000 |00:00:00.01 | 4 | 0 | | | |
| 5 | TABLE ACCESS FULL| T1 | 1 | 70183 | 73156 |00:00:00.08 | 1048 | 749 | | | |
---------------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(("A"."RN"<=10 AND "A"."RN">=1))
3 - access("T1"."OBJECT_ID"="T2"."ID1")
Note
-----
- dynamic sampling used for this statement (level=2)

这个查询总共返回10记录,但是内部查询返回了  条记录。

优化后:

select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=10) a
where a.rn >= 1; SELECT * FROM table(dbms_xplan.display_cursor(NULL,NULL,'allstats last'));
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------------------------------------
SQL_ID 7wzvqay91x14y, child number 0
-------------------------------------
select * from (select t1.*, rownum as rn from t1, t2 where
t1.object_id = t2.id1 and rownum<=10) a where a.rn >= 1 Plan hash value: 1802812661
------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 10 |00:00:00.01 | 9 | | | |
|* 1 | VIEW | | 1 | 10 | 10 |00:00:00.01 | 9 | | | |
|* 2 | COUNT STOPKEY | | 1 | | 10 |00:00:00.01 | 9 | | | |
|* 3 | HASH JOIN | | 1 | 1008 | 10 |00:00:00.01 | 9 | 1036K| 1036K| 1210K (0)|
| 4 | TABLE ACCESS FULL| T2 | 1 | 1000 | 1000 |00:00:00.01 | 4 | | | |
| 5 | TABLE ACCESS FULL| T1 | 1 | 70183 | 10 |00:00:00.01 | 5 | | | |
------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("A"."RN">=1)
2 - filter(ROWNUM<=10)
3 - access("T1"."OBJECT_ID"="T2"."ID1")
Note
-----
- dynamic sampling used for this statement (level=2)

T1表只返回十条数据。

这种修改 可以优化分页数据。

第一页
select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=10) a
where a.rn >= 1; 第二页 select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=20) a
where a.rn >= 10; 第三页 select *
from (select t1.*, rownum as rn from t1, t2 where t1.object_id = t2.id1 and rownum<=30) a
where a.rn >= 20;

这样,可以提高前几页的分页效率。

7.使用索引消除排序。

比如需要根据object_id 进行排序,那么可以使用索引消除排序操作,因为索引本身有序。

create index idx_object_id on t(object_id);
set autotrace traceonly
select * from t where object_id>2 order by object_id;

识别低效率的SQL语句的更多相关文章

  1. oracle 识别’低效执行’的SQL语句

    用下列SQL工具找出低效SQL: SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, ROUND((BUFFER_GETS-DISK_READS)/BUFFER_ ...

  2. 小贝_mysql sql语句优化过程

    sql语句优化 一.SQL优化的一般步骤 (1).通过show status命令了解各种SQL的运行频率. (2).定位运行效率较低的SQL语句-(重点select) (3).通过explain分析低 ...

  3. Mysql写出高质量的sql语句的几点建议

    CleverCode在实际的工作也写过一些低效率的sql语句.这些语句会给数据库带来非常大的压力.最基本的表现就是sql语句执行慢,后来逐渐的去优化和尝试. 总结了一些高质量的sql语句的写法.这里C ...

  4. sql语句优化SQL Server

    MS   SQL   Server查询优化方法查询速度慢的原因很多,常见如下几种 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)          2.I/O吞吐量小,形成了 ...

  5. 数据库性能优化之SQL语句优化

    一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的编写等是体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...

  6. 整理:sql语句优化之SQL Server

    . 增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存.使用并行还是串行程是MsSQL自动评估选择的.单个任务分解成多个任务,就可 以在处理器上运行.例如耽搁查询的排序.连接.扫描和 ...

  7. 数据库 SQL语句优化

    温馨提示:本篇内容均来自网上,本人只做了稍微处理,未进行细致研究,仅当做以后不备之需,如若你喜欢可尽情转走. 一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图 ...

  8. [转]数据库性能优化之SQL语句优化1

    一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...

  9. 数据库优化之SQL语句优化-记录

    1. 操作符优化 (a) IN 操作符 从Oracle执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别: ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查 ...

随机推荐

  1. JS 实现新浪微博, QQZone 等的分享

    <script type="text/javascript">window.pageConfig = { compatible: true,searchType: 1 ...

  2. JZs3c2440学习笔记一

    1.连线 串口线usb-com,USB下载线 2.驱动安装 USB-serial,  dnw的sec s3c2410x test驱动安装(win7下安装方法搜索:百问网WIN7,64,dnw) 3.烧 ...

  3. iOS - MVP 架构模式

    1.MVP 从字面意思来理解,MVP 即 Modal View Presenter(模型 视图 协调器),MVP 实现了 Cocoa 的 MVC 的愿景.MVP 的协调器 Presenter 并没有对 ...

  4. Springmvc中 同步/异步请求参数的传递以及数据的返回

    转载:http://blog.csdn.net/qh_java/article/details/44802287 注意: 这里的返回就是返回到jsp页面 **** controller接收前台数据的方 ...

  5. linux学习笔记2-命令总结5

    压缩解压命令 bzip2,gunzip,gzip,tar,zip 网络命令 ifconfig - 查看和配置网卡 lastlog - 检查某特定用户上次登录的时间 last - 列出目前和过去登入系统 ...

  6. 初识redis——mac下搭建redis环境

    一.redis简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合)和zset(有 ...

  7. JavaWeb 7 Servlet

    7 Servlet Servlet学习的大纲:1. servlet概念及相关接口简介2. servet 执行过程3. servlet路径映射4. 缺省servlet          --应用5. s ...

  8. javascript 键盘事件总结

    原文:http://www.cnblogs.com/rubylouvre/archive/2009/08/20/1550526.html#2583814 在进入正题前,我们看一下浏览器对于键盘的一些默 ...

  9. OpenGL的GLUT初始化函数[转]

    OpenGL的GLUT初始化函数 void glutInit(int* argc,char** argv) 初始化GLUT库.对应main函数的形式应是:int main(int argc,char* ...

  10. maven寻找jar

    http://mvnrepository.com/artifact/org.springframework/spring-context