1 Riemann 积分的局限性

(1) Riemann 积分与极限的条件太严:    $$\bex    f_k\rightrightarrows f\ra \lim \int_a^b f_k    =\int_a^b \lim f_k.    \eex$$

这 ``一致收敛'' 极大地限制了 Riemann 积分的应用.

(2) 积分运算不完全是微分运算的逆运算:    $$\bex    f\mbox{ 在 }x\mbox{ 连续}\ra \frac{\rd}{\rd x}\int_a^x f(t)\rd t=f(x),    \eex$$

但微分后再积分不一定能还原. 比如 Volterra 于 1881 年构造了一可微函

数 $F(x)$, 其导函数 $f(x)$ 有界但不 Riemann 可积, 而    $$\bex    F(x)=F(a)+\int_a^xf(t)\rd t    \eex$$

步成立.

2 鉴于 Riemann 积分的以上缺陷, Lebesgue 于 1902 年引入了 Lebesgue 积分, 很

大程度上摆脱了以上 Riemann 积分的困境.

3 Lebesgue 积分的的步骤

(1) Riemann 积分主要为: ``竖分割, 求和, 取极限'':    $$\bex    \lim \sum f(\xi_i)(x_i-x_{i-1});    \eex$$

(2) Lebesgue 积分主要为: ``横分割, 求和, 取极限'':    $$\bex    \lim \sum y_i mE[y_i\leq f< y_{i+1}].    \eex$$

4 Lebesgue 积分的基本思路

(1) 易知 $f\geq 0\ra $ 积分 $\geq 0$; $f\leq 0\ra$ 积分 $\leq 0$; 一般 $f\ra$ 积分 $=$ 正、负面

积的代数和. 我们考虑的可测函数 $f:E\to\overline{\bbR}$, 其正面积可能为 $\infty$, 负面

积可能为 $\infty$, 而可能出现 $\infty-\infty$ 的不定情形. 所以我们先考虑非负函数的积分.

(2) 对非负函数的积分, 有一个特别简单的情形, 那就是简单函数的积分.

(3) 所以本章的结构如下:

$\S 2$ 考虑非负简单函数的 Lebesgue 积分;

$\S 3$ 考虑非负可测函数的 Lebesgue 积分;

$\S 4$ 考虑一般可测函数的 Lebesgue 积分;

$\S 5$ 指出 Riemann 积分与 Lebesgue 积分的关系;

$\S 6$ 推广 Fubini 定理.

[实变函数]5.1 Riemann 积分的局限性, Lebesgue 积分简介的更多相关文章

  1. [实变函数]5.3 非负可测函数的 Lebesgue 积分

    本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分      ...

  2. [实变函数]5.2 非负简单函数的 Lebesgue 积分

    1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中     ...

  3. [实变函数]5.5 Riemann 积分和 Lebesgue 积分

    1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\ ...

  4. [实变函数]5.4 一般可测函数的 Lebesgue 积分

    1定义 (1)$f$ 在 $E$ 上积分确定 $\lra$ $\dps{\int_Ef^+(x)\rd x<+\infty}$ 或 $\dps{\int_Ef^-(x)\rd x<+\in ...

  5. [实变函数]5.6 Lebesgue 积分的几何意义 $\bullet$ Fubini 定理

    1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed ...

  6. net登录积分(每天登录积分仅仅能加一次) 时间的比較

      public void jifenchange()//积分方法     {         //积分模块//推断如今的日期和任务完毕日志数据库取出来 的日期大小,注意:Compare()方法仅仅会 ...

  7. 【需求设计1】VIP积分系统无聊YY

    RT,想到什么就写什么呗,这是最简单的方式,顺便给自己做一个记录,反正自己记忆力也不太好.本文是仿陆金所的积分系统,自己YY的一套东西. 首先我想做一个VIP兑换投资卷的功能: 我们先来确定一些我知道 ...

  8. 搭建属于自己的VIP积分系统(1)

    很久没写博客了,如果有写得不好的地方,还请多多见谅. 架构设计 需求分析 这篇文章主要是介绍此VIP系统的基础架构.说实在的,我其实对 架构方面也不是很懂,我这套框架 还是拿别人的东西改过来的,并不是 ...

  9. HDU 5826 physics (积分推导)

    physics 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5826 Description There are n balls on a smoo ...

随机推荐

  1. [AMPPZ 2013]Bytehattan

    先把题目链接贴在这里喵~ http://main.edu.pl/en/archive/amppz/2013/baj 话说真是一道让我严重怀疑我的智商的好题目, 话说此题第一感觉.嗯?似乎离线做做就可以 ...

  2. HTML中特殊字符和与之对应的ASCII代码

    ASCII代码是说明了在html中每个特殊字符的属性以及字符的简要说明.在使用html时,如何把ASCII代码添加到网页中.例如版权符号'©'在html中可以通过 "©"来显示. ...

  3. 【转】win7 uac关闭

    方法1: 原文网址:http://jingyan.baidu.com/article/c275f6bae2650ce33d756795.html 首先点击开始,并在输入框中输入“MSCONFIG”,打 ...

  4. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

  5. Java之JUC系列:外部Tools

    前面写了两篇JDBC源码的文章,自己都觉得有点枯燥,先插一段JUC系列的文章来换换胃口,前面有文章大概介绍过JUC包含的东西,JUC体系包含的内容也是非常的多,不是一两句可以说清楚的,我这首先列出将会 ...

  6. jquery mouseout事件错误(bug)

    移到子元素上时(例如,处在div中的图像),触发移出事件 (mouseout事件的一个常见错误). 解决办法是使用hover事件 在使用hover事件前,我抓耳挠腮的以为是margin或padding ...

  7. Caffe-windows上训练自己的数据

    1.数据获取 在网上选择特定类别,下载相应的若干张图片.可以网页另存或者图片下载器.本例中保存了小狗.菊花.梅花三类各两百多张. 2.重命名 import os import os.path root ...

  8. python-ansible

    http://sofar.blog.51cto.com/353572/1579894 http://www.aikaiyuan.com/6299.html http://docs.ansible.co ...

  9. windows下android开发环境搭建

    JDK的安装和Java环境变量的设置 1 JDK下载地址 JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.h ...

  10. js net 除法取整

    1.js中 在编程运算中,除法取整数是比较常用的!一般的编程语言都有内置的函数,JS 脚本也不例外.在JavaScript 中,实现除法取整数有两种方法,即是两个内置函数:Math.floor 和Ma ...