题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5943

题意:n个人编号为[s+1,s+n],有n个座位编号为[1,n],编号为i的人只能坐到编号为它的约数的座位,问每个人是否都有位置坐。

首先,可以肯定的是素数编号的人只能做到自己的编号上或者是1上,那么假如[s+1,s+n]区间内出现了两个以上的素数,那么整个情况是无解的。

其次,假如s<n的话,可以把[s+1,s+n]直接放到[s+1,s+n]上,剩下的将会是s个人和s个座位,人的编号是[n+1,n+s],座位的编号是[s+1,s+n],所以直接给s和n交换一下就行。

我断定1000个数之间一定会出现至少两个素数,因此当n>1000的时候就是无解了。

接下来就是O(n^2),按照能否整除建图了,跑出最大匹配,看看跟n是不是相等就行了。

 #include <bits/stdc++.h>
using namespace std; const int maxn = ;
int nu, nv;
int G[maxn][maxn];
int linker[maxn];
bool vis[maxn];
int s, n; bool dfs(int u) {
for(int v = ; v <= nv; v++) {
if(G[u][v] && !vis[v]) {
vis[v] = ;
if(linker[v] == - || dfs(linker[v])) {
linker[v] = u;
return ;
}
}
}
return ;
} int hungary() {
int ret = ;
memset(linker, -, sizeof(linker));
for(int u = ; u <= nu; u++) {
memset(vis, , sizeof(vis));
if(dfs(u)) ret++;
}
return ret;
} int main() {
// freopen("in", "r", stdin);
int T, _ = ;
scanf("%d", &T);
while(T--) {
scanf("%d %d", &s, &n);
memset(G, , sizeof(G));
printf("Case #%d: ", _++);
if(s < n) swap(s, n);
if(n > ) {
puts("No");
continue;
}
nu = * n, nv = n;
for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
if((s + i) % j == ) G[i+n][j] = ;
}
}
if(hungary() == n) puts("Yes");
else puts("No");
}
return ;
}

[HDOJ5943]Kingdom of Obsession(最大匹配,思路)的更多相关文章

  1. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  2. hdu 5943 Kingdom of Obsession 二分图匹配+素数定理

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. hdu5943 Kingdom of Obsession 二分图+打表找规律

    题目传送门 Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  4. 【HDOJ5943】Kingdom of Obsession(数论)

    题意:给定n个人,n个座位,人的编号是[1,n],座位的编号是[s+1,s+n],编号为i的人能坐在编号为j的座位上的条件是j%i=0 问是否存在一组方案使得座位和人一一对应 n,s<=1e9 ...

  5. HDU 5943 Kingdom of Obsession

    题意:n个人编号为[s+1, s+n],有n个座位编号为[1,n],编号为 i 的人只能坐到编号为它的约数的座位,问每个人是否都有位置坐. 题解:由于质数只能坐到1或者它本身的位置上,所以如果[n+1 ...

  6. 「国庆训练」Kingdom of Obsession(HDU-5943)

    题意 给定\(s,n\),把\(s+1,s+2,...,s+n\)这\(n\)个数填到\(1,2,...,n\)里,要求\(x\)只能填到\(x\)的因子的位置(即题目中\(x\%y=0\)那么x才能 ...

  7. HDU 5938 Kingdom of Obsession(数论 + 二分图匹配)

    题意: 给定S,N,把S+1,S+2,...S+N这N个数填到1,2,...,N里,要求X只能填到X的因子的位置.(即X%Y=0,那么X才能放在Y位置) 问是否能够放满. 分析:经过小队的分析得出的结 ...

  8. HDU5943 Kingdom of Obsession 题解

    题意 有 \(n\) 个数 \(s+1\ldots s+n\),求是否能将这 \(n\) 个数放到 \(1\ldots n\) 上,且当令原数为 \(x\),放到 \(y\) 位置时有 \(x \mo ...

  9. bzoj 1854: [Scoi2010]游戏 (并查集||二分图最大匹配)

    链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 写法1: 二分图最大匹配 思路:  将武器的属性对武器编号建边,因为只有10000种 ...

随机推荐

  1. 1.js基础

    1.如何在html文档中使用js 1)使用<script></script>将JS语法嵌入到html中,可以使用多个,每个之间都是有关联的 2)href="javas ...

  2. android 学习随笔六(网络要求及配置)

    android在4.0之后已经不允许在主线程执行http请求了. 主线程阻塞,应用会停止刷新界面,停止响应用户任何操作,耗时操作不要写在主线程   只有主线程才能修改UI ANR异常:Applicat ...

  3. 查看lnmp 编译参数

    nginx :版本/opt/local/nginx/sbin/nginx -v 编译参数:/opt/local/nginx/sbin/nginx -V apache:版本/opt/local/http ...

  4. V4L2应用程序框架-二【转】

    本文转载自:http://blog.csdn.net/tommy_wxie/article/details/11371439 V4L2驱动框架 主设备号: 81 次设备号:    0-63    64 ...

  5. 【python cookbook】【字符串与文本】9.将Unicode文本统一表示为规范形式

    问题:确保所有的Unicode字符串都拥有相同的底层 解决方案:为解决同一个文本拥有多种不同的表示形式问题,应该先将文本统一表示为规范形式,这可以通过unicodedata模块来完成, unicode ...

  6. MyEclipse下搭建maven项目

    由于maven在构建项目方面确实比较出色,现今绝大多数人构建项目都采用maven,而且绝大多数人都采用eclipse作为开发环境,今天我用myeclipse搭建了一个demo,虽然基本上不会采用mye ...

  7. nohup DEMO

    nohup,顾名思义:挂起免疫. nohup命令可以防止当你退出系统时,在后台运行的进程被终止.它能让你运行的命令或脚本在你退出系统后继续在后台运行. nohup命令不能自动的将任务放在后台运行,所以 ...

  8. 项目管理:CocoaPods建立私有仓库

    CocoaPods是iOS,Mac下优秀的第三方包管理工具,类似于java的maven,给我们项目管理带来了极大的方便. 个人或公司在开发过程中,会积累很多可以复用的代码包,有些我们不想开源,又想像开 ...

  9. easyui常现错误

    1.easyui-tabs:当data-options的属性设置为true时,其tab内部的内容显示不出来. 2.设置easyui-panel的title格式及字体大小无效 解决方法:在设置title ...

  10. mysql高可用之PXC(Percona XtraDB Cluster)

    简介 Percona XtraDB Cluster是MySQL高可用性和可扩展性的解决方案,Percona XtraDB Cluster提供的特性如下: 1).同步复制,事务要么在所有节点提交或不提交 ...